• 高性能:VLS 编码器提供高分辨率数字或模拟输出,角度分辨率高达 21 位,精度高达 ±0.001°。• 轻巧紧凑• 坚固:VLS 电容式编码器是空心浮轴设备,没有轴承或其他接触件。它们符合 MIL-STD-810F 的振动规范,并经过了 10 毫秒内高达 100g 的冲击载荷测试。• 适合太空使用:可承受轨道辐射条件以及高 EMI、RFI 和磁场• 对温度不敏感:能够承受极端的热波动• 真空兼容:特殊涂层可将排气量降至最低,达到 10ˉ⁵ 托的真空度• 经济:由于 VLS 编码器是经过改进的 COTS 设备,因此它们的成本比传统的专用太空级编码器要合理得多。大多数系统需要多个编码器,因此这种成本差异是一个很大的优势。 • 可用:VLS 编码器基于改进的 COTS 设计,因此我们可以大批量、快速地提供它们。
摘要 — 蒙蔽图像建模 (MIM) 在各种视觉任务上都取得了令人鼓舞的结果。然而,学习到的表征的有限辨别能力表明,在构建更强大的视觉学习器方面仍有许多工作要做。为了实现这一目标,我们提出了对比蒙蔽自编码器 (CMAE),这是一种新的自监督预训练方法,用于学习更全面、更强大的视觉表征。通过新颖的设计精心统一对比学习 (CL) 和蒙蔽图像模型 (MIM),CMAE 利用它们各自的优势,学习具有强大实例辨别能力和局部可感知能力的表征。具体而言,CMAE 由两个分支组成,其中在线分支是非对称编解码器,动量分支是动量更新编码器。在训练期间,在线编码器从蒙蔽图像的潜在表示重建原始图像以学习整体特征。动量编码器以完整图像为输入,通过与在线编码器进行对比学习来增强特征辨别能力。为了使 CL 与 MIM 兼容,CMAE 引入了两个新组件:用于生成可信正视图的像素移位和用于补充对比对特征的特征解码器。得益于这些新颖的设计,CMAE 相比 MIM 有效地提升了表征质量和迁移性能。CMAE 在图像分类、语义分割和目标检测等竞争激烈的基准测试中取得了最佳性能。值得注意的是,CMAE-Base 在 ImageNet 上实现了 85.3% 的 top-1 准确率,在 ADE20k 上实现了 52.5% 的 mIoU,分别比之前的最好成绩提高了 0.7% 和 1.8%。源代码可在 https://github.com/ZhichengHuang/CMAE 公开访问。
摘要 - 采取有意义的AI问责制的最具体的措施之一是对系统的性能和影响。但是,“ AI审核”生态系统的实际性质被混乱和不精确,使得难以通过各种概念来工作并绘制出参与实践的利益相关者。首先,我们将监管机构,律师事务所,民间社会,新闻学,学术界,咨询机构完成的当前AI审计实践分类。接下来,我们评估每个域内利益相关者进行的审核的影响。我们发现,只有一部分AI审核研究将转化为所需的问责结果。因此,我们评估和隔离了有效的AI审核结果所需的实践,并阐明了AI审核设计,方法论和机构背景之间观察到的联系,以作为其有意义的责任机制。索引术语 - 评估,审计,问责制,人工智能,社会,法律,机器学习,数据科学
摘要:用于3D体积生成和重建的生成对抗网络(GAN),例如形状产生,可视化,自动化设计,实时仿真和研究范围,在各个领域都受到了更多的关注。但是,诸如有限的培训数据,高计算成本和模式崩溃问题之类的挑战持续存在。我们建议将变异自动编码器(VAE)和gan结合起来,以发现增强的3D结构,并引入一种稳定且可扩展的渐进式增长方法,以生成和重建基于体素的基于体素的3D形状。级联结构的网络涉及生成器和鉴别器,从小型体素大小开始,并逐步添加图层,同时在每个新添加的层中使用地面标签监督歧视器,以建模更广阔的体素空间。我们的方法提高了收敛速度,并通过稳定的增长来提高生成的3D模型的质量,从而促进了复杂的体素级详细信息的准确表示。通过与现有方法的比较实验,我们证明了方法在评估体素质量,变化和多样性方面的有效性。生成的模型在3D评估指标和视觉质量中表现出提高的准确性,使它们在包括虚拟现实,元评估和游戏在内的各个领域都很有价值。
在生物信息学中,蛋白质二级结构预测在理解蛋白质功能和相互作用中起着重要作用。本研究介绍了TE_SS方法,该方法使用基于变压器编码的模型和ANKH蛋白质语言模型来预测蛋白质二级结构。根据蛋白质的二级结构(DSSP)版本4。使用各种数据集对模型的性能进行了严格评估。此外,本研究还将模型与八个结构类预测中的最新方法进行了比较。调查结果表明,TE_SS在九级和三类结构预测中表现出色,同时还表现出八类类别的熟练程度。这是由于其在QS和SOV评估指标中的性能而强调的,这证明了其识别复杂蛋白质序列模式的能力。此进步为蛋白质结构分析提供了重要的工具,从而丰富了生物信息学领域。
在线工具有意义的活动,并表示希望拥有在线和面对面选项的愿望。一些参与者描述了在限制期间参加各种在线社交团体活动的参与,例如参加“通过Zoom参加Zumba课程”(P6)。随着限制的逐渐缓解,其中一些活动仍在网上继续进行。p14说:“我们曾经每月进行一次讲座,他们再也没有回到面对面。从那以后一直在线。”许多参与者享受这些在线机会提供的便利,尤其是在特殊情况下正如P4所说:“下雨或10度时,我不可能在公园里做瑜伽”。P5说:“这对人有帮助
自我监督的学习吸引了越来越多的关注,因为它在没有注释的情况下从数据中学习了数据驱动的代表。基于视觉变压器的自动编码器(VIT-AE)(He等人,2021)是一种最近的自我监督的学习技术,它采用补丁掩盖策略来学习有意义的潜在空间。在本文中,我们专注于改善VIT-AE(绰号为VIT-AE ++),以更有效地表示2D和3D医疗信息。我们提出了两个新的损失功能,以增强训练阶段的表示。第一个损失术语旨在通过考虑建立依赖性并间接改善表示形式来改善自我重建。第二损失项的利用对比损失,以直接从两个随机掩盖的视图中优化表示形式。作为独立的贡献,我们将Vit-ae ++扩展到3D fash-im,以进行体积医学图像。我们在自然图像和医学图像上广泛评估VIT-AE ++,这表明对香草Vit-Ae的持续改善及其优于其他对比学习方法。我们的代码可在https://github.com/chinmay5/vit_ae_plus_plus.git关键字:表示;自学学习;蒙版视觉变压器
摘要:音乐和艺术的生成AI模型越来越复杂且难以理解。Exable AI(XAI)的领域旨在使人们更容易理解神经网络等复杂而不透明的AI模型。使生成AI模型更易于理解的一种方法是将少数具有语义上有意义的属性施加在一般的AI模型上。本文对影响的影响进行了系统的检查,即变异自动编码器模型的不同组合(MeasureVae和Eversarialvae),AI模型中潜在空间的配置(4至256个潜在维度)(从4到256个潜在维度),以及训练数据集(训练数据集(训练数据集)(爱尔兰民间,土耳其民间,经典和流行音乐)在2或4含义上有着2或4含义于音乐上的音乐表演,这是有意义的。迄今为止,在此类级别的细节级别上没有进行此类模型的系统比较。我们的发现表明,与对抗性属性具有更好的音乐属性独立性相比,Measurevae具有更好的重建性能。的结果表明,Measurevae能够通过相互可靠的音乐控制层面来创造音乐流派的音乐,并以低复杂性音乐(例如流行音乐)的表现最好。我们建议32或64个潜在的维度空间对于使用Measurevae跨流派产生音乐时的4个正则化尺寸是最佳的。我们的最终是对音乐的最新生成AI模型的配置的第一个详细比较,可用于帮助选择和配置AI模型,音乐功能和数据集,以实现更易于理解的音乐。
摘要 - 深度学习模型最近在许多分类任务上表现出色。深度神经网络的出色表现取决于大量的训练数据,同时必须具有相等的类别分布才能有效。但是,在大多数现实世界中,标记的数据可能受到类别之间高不平衡比率的限制,因此,大多数分类算法的学习过程受到不利影响,从而导致预测和性能较低。三种主要方法解决了不平衡学习的问题,即数据级,算法级别和混合方法,这些方法结合了上述两种方法。数据生成方法通常基于生成的对抗网络,这些网络需要大量的数据,而模型级别的方法需要广泛的领域专家知识来制定学习目标,从而在没有此类知识的情况下对用户访问较差。此外,这些方法中的绝大多数被设计和应用于成像应用,更少的时间序列,并且对它们都极为罕见。为了解决上述问题,我们介绍了Genda,Genda是一种基于生成邻域的Deep AutoCoder,它在设计方面既简单又有效,并且可以成功地应用于图像和时间序列数据。genda基于学习潜在
由于元件尺寸极小且功耗巨大,基于互补金属氧化物半导体 (CMOS) 技术的器件性能有限。确实,许多研究人员正在考虑如何使用低功耗方法在纳米级构建复杂的逻辑电路。为了降低设计密度并实现高速切换,有必要考虑 CMOS 替代品。量子点细胞自动机 (QCA) 是一种新型无晶体管范例,可用于创建具有高密度和太赫兹速度切换的纳米级器件。有许多参考文献 [1-3] 深入探讨了实验特性和物理实现(金属岛、半导体、磁性和分子 QCA)。第一个基于原始材料的功能量子单元刚刚建成 [4]。CMOS 技术的一个问题是它倾向于耗散大量电能。借助可逆计算,可以防止计算过程中的能量损失,这已被提出 [5]。研究证实了这一点。在可逆逻辑中,可逆门起着关键作用。研究界已提出了几种类型的可逆门 [5]。Toffoli 门因其可执行多种任务而得到广泛应用 [6-9]。