Bathyarchaeia代表了一类古细菌常见,并且在沉积生态系统中丰富。在这里,我们报告了56个在不同环境的宏基因组中鉴定出的谷胱甘肽病毒的元基因组组装基因组。基因共享网络和系统基因组学分析导致了四个病毒家族的提议,包括Realms Duplodnaviria和Adnaviria的病毒,以及古细菌特异性的纺锤形病毒。基因组分析这些病毒中发现了各种CRISPR元素。拟建家族“ Fuxiviridae”的病毒带有非典型类型IV-B CRISPR-CAS系统和Cas4蛋白,可能会干扰宿主免疫。Viruses of the family “ Chiyouviridae ”encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses.这些发现提出了Bathyarchaeia Virome的轮廓,并瞥见了其反防卫机制。
摘要:在生命的三个领域中,同源重组(HR)的过程在修复双链DNA断裂和重新开始停滞的复制叉中起着核心作用。奇怪的是,参与人力资源过程的主要蛋白质参与者似乎对于高素化的古细菌提出了有关人力资源在极端条件下的古细菌中的复制和修复策略中的作用的有趣问题。该过程的一个关键参与者是重组酶RADA,它允许同源链搜索,并提供了遵循DNA合成并恢复遗传信息所需的DNA底物。DNA聚合酶在古细菌中尚不清楚链交换步骤后的操作。使用Abyssi Abyssi蛋白的工作,在这里我们表明,DNA聚合酶,家庭-B聚合酶(POLB)和家族-D聚合酶(POLD)都可以负责处理RADA介导的重组中间体。我们的结果还表明,与POLB相比,POLD的效果要少得多,以扩展位移环(D-Loop)底物处的入侵DNA。这些观察结果与先前对热圆菌物种获得的遗传分析相吻合,表明POLB主要参与DNA修复,而不是必不可少的,这可能是因为Pold可以接管其他伴侣。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月25日。 https://doi.org/10.1101/2025.01.24.634423 doi:Biorxiv Preprint
先天免疫是抵御病毒的第一道防线,其中线粒体在诱导干扰素 (IFN) 反应中起着重要作用。BHRF1 是一种在 Epstein-Barr 病毒再激活过程中表达的多功能病毒蛋白,它会调节线粒体动力学并破坏 IFN 信号通路。线粒体是一种可移动的细胞器,借助细胞骨架,特别是微管 (MT) 网络,它可以在细胞质中移动。微管会经历各种翻译后修饰,其中包括微管蛋白乙酰化。在本研究中,我们证明 BHRF1 会诱导微管过度乙酰化以逃避先天免疫。事实上,BHRF1 的表达会诱导缩短的线粒体聚集在细胞核旁边。这种“线粒体聚集体”围绕着丝粒组织,其形成依赖于微管。我们还观察到 α-微管蛋白乙酰转移酶 ATAT1 与 BHRF1 相互作用。使用 ATAT1 敲低或不可乙酰化的 α-微管蛋白突变体,我们证明了这种高乙酰化对于线粒体聚集体的形成是必需的。在 EBV 重新激活期间也观察到了类似的结果。我们研究了导致线粒体聚集的机制,并确定了运动蛋白是线粒体聚集所需的马达。最后,我们证明了 BHRF1 需要 MT 高乙酰化来阻止 IFN 反应的诱导。此外,MT 高乙酰化的丧失会阻止自噬体定位到靠近线粒体聚集体的位置,从而阻碍 BHRF1 启动线粒体自噬,而线粒体自噬对于抑制信号通路至关重要。因此,我们的结果揭示了 MT 网络及其乙酰化水平在诱导亲病毒线粒体自噬中的作用。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月16日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.15.632061 doi:Biorxiv Preprint
通过将无监督和监督的机器学习方法结合起来,我们提出了一个称为Usmorph的框架,以进行星系形态的自动分类。在这项工作中,我们通过提出基于Convnext大型模型编码的算法来更新无监督的机器学习(UML)步骤,以提高未标记的星系形态分类的效率。该方法可以概括为三个关键方面,如下所示:(1)卷积自动编码器用于图像降级和重新冲突,并且模型的旋转不变性通过极性坐标扩展提高; (2)利用名为Convnext的预训练的卷积神经网络(CNN)来编码图像数据。通过主体组合分析(PCA)维度降低进一步压缩了这些特征; (3)采用基于装袋的多模型投票分类算法来增强鲁棒性。,我们将此模型应用于宇宙场中的i -band样品的i -band图像。与原始的无监督方法相比,新方法所需的聚类组的数量从100减少到20。最后,我们设法对大约53%的星系进行了分类,从而显着提高了分类效率。为了验证形态层化的有效性,我们选择了M ∗> 10 10m⊙的大型星系进行形态学参数测试。分类结果与星系在多个参数表面上的物理特性之间的相应规则与现有演化模型一致。增强的UML方法将来将支持中国空间站望远镜。我们的方法证明了使用大型模型编码对星系形态进行分类的可行性,这不仅提高了星系形态分类的效率,而且还节省了时间和人力。此外,与原始UML模型相比,增强的分类性能在定性分析中更为明显,并且成功超过了更多的参数测试。
1天然产品的转化基因组挖掘,培养基和感染医学研究所Tübingen(IMIT)(IMIT),研究学研究所生物医学信息学研究所(IBMI),Tübingen,Auf der Morgenstelle 28,72076Tübingen2 28,72076Tübingendenoker -Nord nord sworkity flative forkitizan of Denok nove nord swiment fin Plads,220,2800 Kongens Lyngby,丹麦3计算生物学,国家农业食品生物技术研究所(NABI),S.A.S.德国6生物信息学中心Saar和Saarland大学,Saarland信息学校园,E2 1,66123Saarbrücken,德国7分子生命科学系和瑞士生物信息学研究所和苏黎世大学,苏黎世大学,苏黎世大学,Winterthurerstrasse,190年Drovendaalsesteeg 1 Radix West,6708pb Wageningen,荷兰9德国感染研究中心(DZIF),合作伙伴Tübingen,Auf der Morgenstelle 28,72076Tübingen,德国,德国
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2025 年 1 月 14 日发布。;https://doi.org/10.1101/2025.01.10.632382 doi:bioRxiv 预印本
leber遗传性视神经神经病(Lhon,Omim#535000)是记录失明案例的重要贡献者。大多数LHON病例超过90%,是由线粒体脱氧核酸(MTDNA)中三个经典致病突变之一引起的:M.3460G> a,M.11778G> a,或M.144484T> c。这些突变发生在编码亚基ND1,ND4或ND6的基因中,氧化磷酸化(OXPHOS)呼吸复合物I(CI)[1]。但是,并非所有携带其中一个突变之一的本性人都会发展出这种疾病,这是一种被称为不完全渗透率的现象。这种高光是其他因素参与疾病表现[2]。对携带这些突变的患者的研究主要定义了与该疾病相关的简化元素,包括生理,环境,
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤