HISAR,125004,印度哈里亚纳邦。摘要 - 在过去的20年中,服装和纺织工业经历了一些有趣的发展。在此概述中描述了各种纺织品饰面技术。先进的纺织品饰面技术可能包括使用纳米涂层,使用水解硅胶,酶,微囊化的表面修饰以及使用纳米涂层和纳米粘膜加强的表面修饰。传统的饰面方法,例如湿和干精加工技术,仍用于棉花和羊毛织物。这些技术将各种纹理和性能质量赋予纺织品材料,从而将其转变为未来的纺织品。没有这些技术,“未来派”的纺织品,例如服装和服装,以及对环境和人体变化做出良好反应的技术纺织品。关键词:完成,创新,技术,纺织品。1。引言任何类型的编织,编织,打结(如在麦克拉米中),簇状或非编织的织物都是纺织品(用纤维制成的布'已将其粘合到织物中,例如感觉)。短语“纺织品饰面”是指生产后在织物上执行的机械和化学程序,但在将其切成衣服或其他物品之前。使用纺织品饰面来产生预期的结果可能是出于美学或实际原因。取决于预期的应用程序,完成程序可能会改变布的外观,使其变软或增强其性能的某些方面。无论使用哪种方法,纺织品饰面都会提高布的消费者吸引力。服装通过整理过程(例如服装湿加工)和添加的结果脱颖而出,这是一个独特的卖点。尽管服装精加工可能应用于各种服装类型,包括衬衫,裤子和T恤,但大部分效果在牛仔布和休闲穿着市场中最受欢迎。在纺织品制造业的背景下进行饰演,是指在染色纱或织物后进行的任何操作,以增强成品纺织品或服装的外观,功能或“手”(感觉)(感觉)。它也可以参考任何将编织或针织布变成可用织物或其他材料的操作。在纱线编织之前,在纱线上使用了某些修饰方法,例如漂白和染色,而其他方法在编织或编织后立即将其用于灰色织物上。其他人,例如默默化,是工业革命的后果,而某些饰面(如装满)已被用来写成几代人的手工编织。特殊的天然纤维饰面酶用于生物抛光中,以去除织物的投射纤维。突出的纤维优先通过酶(例如棉花纤维素酶)去除。可以升高温度以停用这些酶。Mercerization提高了编织棉织物的光泽和强度以及对颜色和耐磨性的亲和力。与绒布一样,提高了表面纤维以增加柔软度和温暖。这种独特的抛光剂经常应用于服装。桃子饰面使用emery车轮在织物上提供类似天鹅绒的饰面(棉花或其合成混合物)。羊毛织物可以变稠,从而使其通过填充或擦拭来使其更具防水性。脱氨酸提供羊毛材料尺寸稳定性。织物的抗微生物治疗可防止细菌在其上生长。在纺织纤维中存在的温暖,潮湿的环境中,微生物更快地增殖。如果织物与皮肤相邻,微生物侵染可能会导致病原体和气味产生的交叉感染。此外,污渍和纺织底物纤维质量的下降是可能的。合成纤维合成纺织品的特殊饰面可能是热设置的,以消除制造过程中产生的内部纤维张力,并且可以通过快速冷却来固定新的条件。可以在其放松状态下永久掺入材料中,从而消除了未来的收缩或折痕。预装产品对染色
研究人员选择了30家公司在西孟加拉邦班克罗(Bankura)的Bishnupur进行编织活动,该公司位于Bishnupur市下的17和12号病房。
我相信世界需要的所有治疗师都可以得到的。我在三十年前开始练习成为一名心理学家,当时我只有二十岁。我开始将能量工作编织到我的心理课程中,并在灵气桌子上与客户进行了所有阅读。这对我来说是一种自然的组合。我也是一名长期的灵气老师,我意识到,随着灵气开始启发他们的敏感性,我的许多灵气学生需要心理发展,所以我开始一起作为Psychic Reiki一起教他们。心理灵气,将传统的灵气训练和心理发展编织在一起,是完美的配对。我认为学习灵气的人可以扩大和发展自己的心理性质,这是很棒的。他们所需要的只是正确的培训。
1 在这种情况下,“混合”和“编织”这两个术语的含义不同。“编织”是指学区为了一个目的协调来自不同来源的资金,但每个资金都有自己的要求。另一方面,“混合”将资金合并成一个有自己要求的资金池。资金在这个更大的资金池中不会保持自己的身份。在混合资金时可能需要考虑一些重要的限制,例如匹配要求或赠款本身的限制,这些限制会阻止混合。Howard-Brown, B., & Zuber, Tara。(2022 年 3 月 16 日)。编织和混合资金:学习、协作和理解。综合中心网络。2022 年 11 月 2 日检索自 https://region9cc.org/blog/braiding-and-blending-funds-learning- collaborating-and-understanding。 2 该工具包于 2022 年秋季编制;因此,它并非旨在作为长期所有联邦资金来源的综合清单,而是当时关键机会的概述。请联系每个拨款计划列出的联系点以获取有关拨款可用性的更多信息,并请访问 www.grants.gov 以了解更多相关机会。3 在许多情况下,联邦资金必须补充非联邦资金。许多计划都有补充而不是取代要求。在申请之前,请仔细查看联邦拨款的所有要求。
拓扑量子计算 (TQC) 是一种量子计算方法,旨在通过利用由非阿贝尔任意子组成的非局部自由度的拓扑属性来最小化硬件层面的退相干 [1-3]。后者是奇异的准粒子激发,具有非平凡的交换统计数据,用辫子群的多维表示来描述。非阿贝尔任意子集合嵌入在退化基态流形中,这允许非局部存储量子信息并通过编织实现幺正变换来处理它。在所有非阿贝尔任意子中,马约拉纳零能量模式 (MZM) 是最有希望用于 TQC 开发的模式 [4-8],因为它们是凝聚态系统中最可行的模式。过去十年,开创性的实验确实在多个不同平台上为它们的存在提供了强有力的证据,如近邻半导体纳米线[9-12]、磁性吸附原子链[13,14]、拓扑超导体内的涡旋[15,16]、平面约瑟夫森结[17,18]和近邻量子自旋霍尔边缘[19,20]。基于马约拉纳量子计算机的构建块是马约拉纳量子比特,由四个马约拉纳零点模型组成。通过物理编织这些马约拉纳零点模型,可以实现所有单量子比特 Clifford 门 [21-23]。这些门受到拓扑保护,因为它们的结果完全取决于 2+1 维空间中任意子绝热遵循的轨迹的拓扑。重要的是,一对 MZM 的编织可以通过多种方式实现,这些方式都等同于两个非阿贝尔任意子的物理交换 [ 24 – 30 ] 。事实上,通过考虑额外的 (混合的) 辅助马约拉纳粒子的存在,我们可以通过适当调整不同 MZM 之间的成对耦合 [ 31 , 32 ] 或通过执行顺序射影宇称测量 [ 8 , 33 – 38 ] 来进行编织。非 Clifford 操作(如 T 门)无法通过马约拉纳编织实现,并且必然依赖于没有拓扑保护的实现,并且需要额外的纠错方案(如魔法态蒸馏)[ 23 , 39 ] 。为了实现通用量子计算,单量子比特门必须补充纠缠门,如 CNOT 门。遗憾的是,这种两量子比特 Clifford 门无法在可扩展架构中仅通过马约拉纳编织操作实现 [22, 40]。基于测量的方法使我们能够克服这个问题,通过对(联合)马约拉纳奇偶性进行高保真投影测量来实现 CNOT 门 [8, 35, 41 – 44]。然而,尽管基于测量的 TQC 已被证明对未来开发完全可扩展的拓扑量子计算机非常有价值,但所需的测量协议仍然是一项艰巨的挑战 [35,45,46]。因此,目前,最好设计和描述替代方案,这些方案不依赖于高保真测量,但仍允许稳健地纠缠不同的拓扑量子位。在这项工作中,我们提出了一种基于完整方法的 CNOT 门的无测量实现。完整量子计算的关键思想是利用非阿贝尔几何相在底层哈密顿量的退化特征空间上实现幺正运算 [47]。当系统参数沿着参数空间中保持退化的闭环进行调整时,就会出现这些规范不变相。这种方法相当通用,已经在非拓扑量子计算方案中成功运用 [47-49]。因此,在 TQC 中使用完整技术也很有意义。事实上,马约拉纳粒子的编织过程本身可以解释为一个完整的过程,其中系统遵循成对马约拉纳粒子耦合的三维参数空间中特定的、拓扑保护的环路 [8, 31]。完整的编织描述的优点是它可以很容易地推广,既可以通过考虑具有不同拓扑结构的环路来实现,也可以通过考虑具有不同拓扑结构的环路来实现。
2024 年 1 月 18 日 — 6526 先进材料工程。1.0。6171 编织与工艺简介 0.5。6323 国际烹饪。0.5。6529 技术研发(材料)。1.0。6172 ...
作者:B Valeriano · 2021 · 被引用 2 次 — Erik Gartzke 和 Jon Lindsay,“编织”。纠结的网络:网络空间中的进攻、防御和欺骗”,安全研究,(Milton。Park:Taylor & Francis,2015 年);...
本文探讨了纺织材料在运动鞋中的应用,研究了其类型,特性,优势,挑战和创新。纺织品材料彻底改变了运动鞋业,提供了提高的性能,提高COM FORT,增强风格和环保选择。自然,合成和混合等不同类型的纺织品材料用于运动鞋的不同部分,例如鞋面,鞋垫,中底和外底。创新的技术,例如3D打印,编织,编织和纳米技术,为CRE提供更具创新性和高性能的运动鞋为CRE提供了令人兴奋的机会。但是,制造商必须解决诸如磨损,清洁和维护以及定价之类的挑战。总体而言,运动鞋中纺织品的使用改变了杜松子酒,随着技术和可持续性的不断发展,我们可以期望在Tex Tile材料的运动鞋领域中更令人兴奋的发展。
Majorana国家的编织表明其非亚洲交换统计数据。编织的一种实现需要控制三台式设备中所有主要州之间的成对耦合。为了:: to:拥有绝热设备,需要对所需的对耦合才能充分:::::::::::::足所以:很大,并且不需要的耦合即可消失。在这项工作中,我们在两维电子气体中设计和模拟了三台式设备,重点是连接三个主要状态的正常区域。我们使用优化方法在多维电压空间中找到设备的运行状态。使用优化结果,我们通过绝热地耦合不同的主要群体状态,而无需缩小拓扑间隙,从而模拟了编织实验。然后,我们评估在三台设备中编织的可行性,以实现不同的形状和无序强度。