直接对人类胚胎进行基因改造是否会影响未来人的福祉?斯帕罗回答这个问题的方法违背了生物伦理学的一个核心目标:产生能够在研究、临床环境或公共政策中产生实际影响的观点。斯帕罗没有参与提供以经验为基础的人类身份描述的研究,而是不加批判地采用了帕菲特众所周知的两种基因干预类型的区分:“影响个人”和“影响身份”。这种区别对斯帕罗 (2022) 来说至关重要。鉴于对未来人的预期福利的合理关注,它允许他决定干预者是否对结果负有道德责任。影响个人的干预就是这种情况,因为只有在这种情况下,未来的人才会从干预中受益或遭受伤害。相比之下,目前通过 CRISPR 实现的体细胞或生殖细胞编辑通常涉及某种形式的选择——通过体外受精、体外胚胎核移植或植入前遗传学诊断——在植入妊娠母亲子宫之前选择“最佳孩子”。选择会影响身份,因为它会改变受孕时间,从而
这项工作属于版权。所有权利都是由出版商唯一的,全部由材料的全部或部分授权的,特别是涉及翻译,重新使用,重新使用,插图,朗诵,广播,对微观或以任何其他物理方式或任何其他物理方式,以及传输或信息的存储和电子设置,计算机或计算机或相似的方法,或者以任何其他物理方式的复制,或者使用。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。就本文包含的材料或可能已犯的任何错误或遗漏而言,出版商,作者或编辑都没有提供任何明示或暗示的保修。出版商在已发表的地图和机构之后的管辖权索赔方面保持中立。
小麦是一种重要的谷物,全球一半人口都食用小麦。小麦面临环境压力,人们使用了不同的技术(CRISPR、基因沉默、GWAS 等)来提高其产量,但 RNA 编辑 (RES) 在小麦中尚未得到充分探索。RNA 编辑在控制环境压力方面具有特殊作用。对不同类型的小麦基因型中的 RES 进行了全基因组鉴定和功能表征。我们通过 RNA 测序分析采用了六种小麦基因型来实现 RES。研究结果表明,RNA 编辑事件均匀发生在所有染色体上。RNA 编辑位点随机分布,在小麦基因型中检测到 10-12 种类型的 RES。在耐旱基因型中检测到的 RES 数量较多。在六种小麦基因型中还鉴定了 A-to-I RNA 编辑(2952、2977、1916、2576、3422 和 3459)位点。基因本体分析后发现,大多数基因参与了分子过程。还检查了小麦中的 PPR(五肽重复序列)、OZ1(细胞器锌指序列)和 MORF/RIP 基因表达水平。正常生长条件使这三个不同基因家族的基因表达出现差异,这意味着不同基因型的正常生长条件可以改变 RNA 编辑事件并影响基因表达水平。而 PPR 基因的表达没有变化。我们使用变异效应预测器(VEP)来注释 RNA 编辑位点,Local White 在蛋白质的 CDS 区域具有最高的 RES。这些发现将有助于预测其他作物的 RES,并有助于小麦抗旱性的发育。
目前,CRISPR/Cas9 的使用是植物(包括生物量作物杨树)精确基因组工程的首选方法。在杨树中传递 CRISPR/Cas9 及其成分的最常用方法是通过农杆菌介导的转化,除了所需的基因编辑事件外,还会导致稳定的 T-DNA 整合。在这里,我们探索了通过 DNA 包被的微粒轰击将基因编辑试剂传递到模型树 Populus tremula x P. alba 中,以评估其开发无转基因、基因编辑树的潜力,以及其在特定靶位整合供体 DNA 的潜力。使用优化的转化方法,有利于再生暂时表达所传递供体 DNA 上基因的植物,我们再生了不含 Cas9 和抗生素抗性编码转基因的基因编辑植物。此外,我们报告了供体 DNA 片段在 Cas9 诱导的双链断裂处频繁整合,为靶向基因插入提供了机会。
本综述深入分析了 CRISPR-Cas9 技术在彻底改变口腔癌研究方面的巨大潜力。它强调了传统治疗的固有局限性,同时强调了对突破性方法的迫切需求。CRISPR-Cas9 能够精确靶向和修改与癌症进展有关的特定基因,其无与伦比的能力预示着治疗干预的新时代。利用全基因组 CRISPR 筛选,可以识别口腔癌细胞中的弱点,从而揭示治疗干预的有希望的目标。在口腔癌领域,CRISPR-Cas9 的破坏力体现在其能够扰乱与耐药性密切相关的基因,从而增强化疗的疗效。为了应对出现的挑战,本综述认真研究了相关问题,例如脱靶效应、有效的传递机制以及围绕生殖系编辑的伦理考虑。通过 CRISPR/Cas9 实现的精确基因编辑,可以通过纠正突变来克服耐药性,从而提高个性化治疗策略的有效性。本综述深入探讨了 CRISPR-Cas9 的前景,阐明了其在医学、农业和生物技术领域的潜在应用。必须强调持续研究的必要性以及开发专门针对口腔癌的靶向疗法的必要性。通过采纳这一全面概述,我们可以为突破性治疗铺平道路,为口腔癌患者带来新的希望,改善治疗效果。
div>duškoLainšček博士提供了有关脂质纳米颗粒(LNP)的一般知识,并在各种货物交付中有效地使用了它们。组成(可离子脂质,辅助脂质,胆固醇)也阐明了,还讨论了PEG脂质和DOTAP添加的作用,以分别辅助特定细胞的靶向和提高RNP封装效率。有关剂量和管理途径的研究。此外,提出了使用LNP的临床方面的临床方面是基于ASS CRISPR的临床试验,并提出了使用LNP的临床试验。LNP可以用mRNA或RNP的形式用作CRISPR/CAS系统的强大交付工具。Jure Bohinc,一名博士生也在众议院建立的重组CAS9蛋白隔离和纯化的方案中提出。LNP产生以及递送,生物抗化和吸收机制。特别强调体内递送以及如何实现被动和主动靶向,尤其是在体内递送大脑,绕过了LNP的局限性及其血脑屏障的局限性。2。Dhanu Gupta(半页)
在整个细胞发育中,DNA可能遭受威胁基因组完整性和细胞存活的损害。最有害的病变之一是双链DNA断裂(DSB),因为它可能导致基因组信息的丢失。DSB可能自然发生在细胞代谢期间,也可能是由外部因素触发的(Deriano; Roth,2013)。无论哪种方式,这些损坏都会通过细胞立即修复,主要是通过两种途径:非同源末端连接(NHEJ)或同源指导修复(HDR)。与通过NHEJ进行修复不同,NHEJ仅将裂解的DNA的末端连接起来(请参阅第2章),HDR途径需要存在相同或非常相似的模板,即完整的序列,以准确地修复病变的DNA(Heyer等人,2010年)。提供用于HDR中使用的模板的可能性代表了通过同源重组(HR)途径进行基因编辑的关键元素,该途径可能被利用为几种新的繁殖技术(NBT)之一。
约翰·格林纳克少校的有趣研究《第二次世界大战中英国空降部队的空中运输和支援飞机供应》(《空中力量评论》第 10 卷,第 3 期,2007 年秋季)提出了有关英国皇家空军和美国陆军航空队与空降部队关系的重要问题。从广义上讲,格林纳克重申了长期以来空降部队的论点,即英国皇家空军对空降部队的支持是半心半意和不充分的,这对后续行动的结果产生了直接和有害的影响。由于“英国皇家空军对其轰炸机至高无上的核心原则的不屈不挠态度”,他们一直阻碍将轰炸机移交给空降部队进行降落伞和滑翔机牵引工作。英国飞机生产主要集中在战斗机和战略轰炸机上,空军参谋部更愿意向美国寻求专门制造的 AT 平台(道格拉斯 C-47 或“达科他”)。英国飞机的有限分配因空降工作所需的长期修改而进一步受到限制,而美国人据称将运输机的生产列为“低优先级”,因此 C-47 交付给英国皇家空军的时间被长期推迟。因此,当 1942 年在北非(火炬行动)和 1943 年在西西里(哈士奇行动)发动第一次大规模空降行动时,英国空降部队完全依赖美国陆军航空兵提供 AT。据说,美国机组人员素质低下是导致英国在火炬行动和哈士奇行动中空降行动结果不尽人意的主要原因。
