摘要 — 空间天气大气可重构多尺度实验 (SWARM-EX) 是一种分布式大气物理学仪器,由三个在低地球轨道运行的 3U 立方体卫星组成。在美国国家科学基金会和美国宇航局立方体卫星发射计划的支持下,SWARM-EX 旨在实现一系列具有挑战性的科学和工程目标。该任务的科学目标集中在通过使用每个航天器上的通量探测实验和平面朗缪尔探针传感器对赤道热层异常和赤道电离层异常进行现场测量来解决悬而未决的大气物理学问题。工程目标集中在通过一系列演示和实验来推进立方体卫星集群的最新技术。本文介绍了三项创新,这些创新将使 SWARM-EX 能够克服其重大挑战。首先,将科学目标形式化为一系列主要科学问题和次要测量演示,然后将其转化为必须进行现场测量的空间和时间尺度。然后使用这些尺度来定义航天器必须达到的相对轨道几何形状。其次,引入一种制导、导航和控制系统,该系统能够获取和维持所需的相对轨道配置。所提出的系统只需要地面控制员的最少输入,在航天器间近距离分离时提供被动安全性,并且能够通过利用新颖的混合推进/差动阻力控制方法以最少的推进剂消耗有效地实现大型集群重构。第三,提出了一种操作概念,使任务目标能够以时间和推进剂的高效性实现,同时对在轨异常提供显著的容忍度。详细讨论了操作概念,包括 (1) 每个阶段要解决的具体任务目标、(2) 每个阶段以及阶段过渡期间要使用的控制方法,以及 (3) 按阶段划分的 ∆ v 预算及其获取方式的说明。介绍了控制方法的交易,以及管理集群操作时面临的一些具体挑战,因为集群之间的航天器间隔从数百米到数千公里不等。
安全并非偶然发生。只有当个人和领导者接受过适当的培训,在计划和执行任务时纪律严明,并且在所做的每一件事中都符合规定的或可接受的标准时,安全才会发生。作为我们职业的管理者,我们对国家和战友们负有责任。最近的事故表明,编队飞行技能正在萎缩,而这种技能很容易消失,尤其是在夜间,或者在执行新的和不熟悉的任务时。在条件发生变化时,遵守标准尤为重要,有时机组人员甚至没有察觉到。这些变化通常代表着任务计划方式的偏离,具有足够的安全裕度,但残余风险的积累超过了安全裕度,并表现为事故。我们维持这些安全裕度的方式是遵守标准或修改任务以增加我们的容错余地。
新南威尔士大学堪培拉分校 (UNSW Canberra) 于 2017 年在澳大利亚皇家空军 (RAAF) 的资助下启动了一项雄心勃勃的立方体卫星研究、开发和教育计划。该计划包括 M1(任务 1)、M2 探路者,最后是编队飞行任务 M2。M2 是最后一次任务,包括两颗 6U 立方体卫星,采用差动气动阻力控制进行编队飞行。M2 卫星于 2021 年 3 月在 RocketLab 的“它们上升得如此之快”发射中以连体 12U 形式发射。2021 年 9 月 10 日,航天器在近圆形 550 公里、45 度倾角轨道上在小弹簧力的作用下分成两个 6U 立方体卫星(M2-A 和 M2-B)。编队通过改变航天器的姿态来控制,由于位于航天器天顶面的大型双展开太阳能电池阵的横截面积变化,导致气动阻力发生很大变化。
随着近年来星载数据量的不断增长,自由空间光学 (FSO) 或激光通信系统正备受关注,因为它们可以实现超过 1 Gbps 的超高数据速率。使用红外光学终端和纳米卫星的超高速卫星间链路系统 (VISION) 是一项技术演示任务,旨在建立和验证使用两颗编队飞行的 6U 纳米卫星的激光交联系统。最终目标是在数千公里的距离上实现 Gbps 级的数据速率。为了建立空间对空间激光通信,每个卫星的有效载荷光轴应在交联过程中精确对齐。有效载荷是激光通信终端 (LCT),包括可部署空间望远镜 (DST),它可以提高光学链路性能。6U 纳米卫星总线采用商用现货 (COTS) 组件设计,以实现敏捷系统开发。为了实现精确的编队飞行,该平台配备了带有 GNSS 接收器和 RF 交联器的相对导航系统、星跟踪器、3 轴反作用轮 (RW) 和推进系统。提出的激光交联系统概念将有助于未来构建具有高速和安全链路的 LEO 通信星座。
大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异
本文介绍了一种新型编队飞行任务 Cal X-1 的相对导航和卫星间指向的误差预算。尽管进行了广泛的地面校准活动,但轨道 X 射线天文台的交叉比较表明,测量的天体源通量存在超过 10% 的系统性差异。Cal X-1 任务将通过使用一对编队飞行的 SmallSat 建立在轨 X 射线通量标准来解决这一问题。第一艘航天器将搭载一台 X 射线望远镜,而第二艘航天器将搭载一个绝对校准的 X 射线源。任务设计需要精确的卫星间指向,但由于尺寸、重量、功率和成本方面的限制,无法使用专用硬件。本文试图证明通过先进的相对导航技术可以满足具有挑战性的卫星间指向要求。高保真模拟展示了合适的相对导航系统的性能。接下来,开发一个数学模型,该模型考虑了相对导航、姿态确定和航天器结构组装引起的误差,以便计算指向知识误差。通过将该指向知识误差与 Cal X-1 任务的要求进行比较,证明了所提出的卫星间指向方法的可行性。
本论文“基于无线定位系统测量的航天器编队飞行导航算法”特此批准,部分满足机械工程 - 力学工程领域哲学博士学位的要求。
新南威尔士大学堪培拉分校在 M2 编队飞行立方体卫星任务上开展了一项实验计划,旨在为可用的空间态势感知 (SSA) 传感器和建模算法提供真实数据。本文概述了在任务的早期、主要和扩展运行阶段计划的实验和部署计划,这些计划为 SSA 观测提供了机会。该任务包括 2x6U 立方体卫星。每颗卫星都使用 3 轴姿态控制系统,利用航天器之间的大气阻力差来控制沿轨道编队。差动气动编队控制使卫星能够保持在可接受的沿轨道偏移范围内,以执行主要任务实验。在整个任务过程中,有几个重要的机会来收集基准 SSA 数据。立方体卫星对最初被连接成 12U 卫星,按照新南威尔士大学堪培拉分校地面站的预定命令,它们将被弹簧沿轨道方向推开,形成 2x6U 卫星编队。航天器分离,随后展开太阳能电池板和天线,标志着在早期运行阶段,配置、雷达截面和轨道发生了重大变化。太阳能电池板的展开将航天器的最大正面面积从收起配置时的 0.043 平方米增加到完全展开时的 0.293 平方米。航天器的姿态将受到控制,以通过差动气动阻力的作用阻止航天器的沿轨分离。卫星具有 GPS 和姿态确定与控制功能,可提供精确的时间、位置、速度和姿态信息,这些信息通常可在卫星遥测中获得。
• 赞助单位:AFRL/飞行器 • 背景:AFIT 优化论文 & 背景:AFIT 多无人机优化与控制理论论文,AFRL