摘要:可生物吸附线的使用已成为一种非辅助提升面部组织的常见微创技术。它需要带刺的螺纹通过,该螺纹在面部和颈部的皮肤下形成支撑结构,以机械重新放置下垂的组织。poly(l-甲状腺素-CO-ε-丙酮酸酯)长期以来一直用作吸收缝合线,因此具有明确的功效和安全性。此生物材料还具有明确的生物相容性和降解曲线。本文审查的所有研究都表明,可吸收刺的螺纹提起螺纹是一种有效且易于耐受性的方法,可纠正面部和颈部软组织的ptosis,并且与次要和可逆的不良反应有关。大多数患者和外科医生都认为该手术令人满意,并以良好的效果。本出版物回顾了支持这些线程的降解,可吸收性,生物相容性,安全性和有效性的文献和临床数据,用于组织重新定位和面部恢复程序。关键字:poly(l-lactide-co-ε-辅助酮),非手术面部提升,可吸收性,微观评估,组织学
摘要。为了改善和恢复生物组织和器官的功能以及疾病的鉴定和治疗,生物医学材料发展的材料科学主题是必不可少的。此类材料经常用于临床环境中使用的许多不同的医疗设备,例如脚手架,缝合线,替代牙齿,人造骨骼,甚至是心脏替代品。通过生物医学材料彻底改变了医疗保健行业的识别,治疗和恢复生理功能的创新方法。在本研究中检查了生物医学材料的开发,分类和治疗用途,除了其生物学衍生的对应物(例如胶原蛋白,丝绸,丝绸,壳聚糖和碱性)外,还要关注金属生物材料,合成聚合物和生物陶瓷。通过生物工程改进,医疗设备的功能已大大提高,这些改进产生了愈合植入物和渐进式诊断成像,从而改善了患者的影响。该评估探讨了纳米材料在生物医学,当前的伤口敷料和抗菌方法中的能力,突出了创建额外强大的疗法以及最小有害的诊断工具内部的局限性和命运机会。
摘要。颅骨突变是指一个或多个颅骨缝合线的早期融合,导致全球1:2,500个出生的颅面异常。在大多数情况下(85%),颅骨突变为零星异常(非综合征颅骨突出),而在其他情况下(15%)作为综合征(综合征颅骨症)。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。 颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。 颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。 正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。综合症患者与具有单缝线冲突的患者通常具有更严重的症状。颅突的最常见综合症包括Pfeiffer,Apert,Crouzon,Jackson-Weiss,Muenke和Boston Type MSX2相关综合征。颅突的主要基因突变涉及FGFR1,FGFR2,FGFR3,Twist1和MSX2,该基因编码影响颅骨形态发生的关键因素。正如本综述所讨论的那样,主要的治疗方法是手术,并且治疗的类型取决于事件的重力。
lanscaterter边缘到边缘修复(TEER)对二尖瓣反流(MR)的处理(MR)首先是根据Ottavio Alfieri教授开创的新型边缘到边缘手术修复技术在1990年代后期构想的。1998年,在得知Alfieri教授的独特手术方法后,弗雷德·圣·戈阿尔(Fred St.经过一些基本的概念证明工作和知识产权的勤奋,他们在1999年秋天创立了一家初创公司评估公司。尽管最初的TEER设备概念专注于将缝合线安装到相对的阀门1或使用导管将传单固定在一起,但2评估了早期的原型制作和测试工作,导致了洞察力,即植入式夹子(无需通过传单就不需要穿线)是一种安全和有效的方法。与创新的医师合作者合作,评估了建立和测试各种早期设备概念的工程团队,最终达到了第一个基于剪辑的TEER技术,今天被称为Mitraclip™System(Abbott)。评估继续通过其2003年的首次人类植入米特拉克利平台的早期发展,随后在欧洲获得了CE Mark的批准。3,4评估是由雅培实验室在2009年获得的。5雅培继续发展和成熟Mitraclip Teer技术和治疗,支持美国FDA在2013年获得Mitraclip系统的批准。6
o对过去18个月的计算机事故事件报告系统(CAIARS)数据库的审查是针对涉及手持磨碎机的事件进行的。应注意的是,未报告以下事件中的事件报告处理系统(ORP)。以下是从Cairs数据库中提取的七起磨床事件的简短描述:事件(2/6/2023):一名工人正在使用研磨机并更改了刀片/碟片,并开始切割一部分钢管。光盘在支撑中撞到了一个凹槽。它向后踢,撞到了胸部的员工,导致胸部横向撕裂。工人在整个胸部区域收到10缝线,并被置于工作限制8天。事件(6/15/2023):一名工人在便携式手持式研磨机上使用砂光盘在焊缝上打扮,并拿着焊接的材料。在焊接焊缝的过程中,砂盘被固定在材料上。碟片释放时,研磨机的势头使研磨机向工人的左手行驶,抓住皮手套,然后抓住工人的左手拇指,导致拇指内部裂缝,导致四个缝合线。事件(8/14/2023):一名工人在电动机上使用电线轮。电线轮向后踢,抓住了工人的长袖衬衫,摧毁了袖子,并在左前臂上造成了磨损/烧伤。绑扎了伤害并提供了处方药。
生长和发展是遗传遗传环境调节的净结果。间充质细胞分化为软骨,成骨和纤维基细胞:第一个2是chie chie -fl y负责内侧软骨的骨化,最后2个用于缝合生长。细胞受到基因和环境提示的影响,以迁移,增殖,分化和合成在特定方向和大小的细胞外基质,最终导致诸如鼻子和下巴等宏观形状。机械力,研究最多的环境线索,容易调节骨骼和软骨生长。最近的实验证据表明,循环力不仅会引起更大的合成代谢反应,这不仅是颅面缝合线,而且还引起了颅底软骨。机械力是组织传播和细胞传播机械应变的传播,进而调节基因表达,细胞增殖,分化,成熟和基质合成,其总数是生长和发育。因此,生长和发育的遗传性和机械调制通过基因共享一个共同的途径。使用遗传学,生物工程和定量生物学的结合方法有望为生长和发育带来新的见解,并可能导致针对颅面骨骼骨骼异常发育不良的创新疗法,包括牙纹质畸形,牙纹质畸形,以及颅面上的杂物和颅面症和颅面症,伴随着脆性症状的疾病。(Am J Orthod Dentofacial Orthop 2004; 125:676-89)G
生物材料用于制造设备,以安全,可靠,经济和生理上可接受的方式替换身体的一部分或功能(Hench and Erthridge,1982)。用于治疗疾病或损伤的各种设备和材料。常见的例子包括缝合线,针头,导管,板,牙齿填充等。生物材料是用于替代生活系统的一部分或在与活组织接触的亲密接触中起作用的合成材料。克莱姆森大学生物材料顾问委员会正式将生物材料定义为“一种系统地和药理惰性物质,旨在植入或与生活系统合并。” Black(1992)将生物材料定义为“用于与生物系统相互作用的医疗设备中使用的不可行材料”。其他包括“合成和自然起源的材料,与组织,血液和生物液接触,旨在用于假肢,诊断,治疗和储存应用,而不会对生物体及其成分产生不利影响”(Bruck,1980)。生物材料的另一个定义被称为“任何物质(除了药物以外)或物质的组合,合成或自然的起源,可以在任何时间段内,整个或整个或用作处理,增强或替换身体,组织或功能的系统的一部分”(Williams,1987年),并在许多方面添加了许多方式,并以不同的方式添加。相反,生物材料是由生物系统产生的材料,例如皮肤或动脉。与皮肤接触的人造物质,例如助听器和可穿戴的人造四肢,因为皮肤是外部世界的障碍。
代谢异常,例如糖尿病和肥胖症,会影响骨骼数量和/或骨骼质量。在这项工作中,我们在结构和组成方面表征了骨骼材料的特性,在新型的大鼠模型中,具有先天性瘦素受体(LEPR)缺乏症,严重的肥胖症和高血糖(2型糖尿病样的疾病)。股骨和来自20周龄的雄性大鼠的钙瓦里亚(顶部区域)被检查以探测由内软骨内和膜内骨化形成的骨骼。与健康对照相比,当通过微型计算的X射线断层扫描(Micro-CT)分析时,LEPR缺陷的动物在股骨微体系结构和钙形态学上显示出显着改变。特别是,骨体积减小的股骨较短,结合较薄的顶骨和较短的矢状缝合线,指向LEPR缺陷啮齿动物的骨骼开发延迟。另一方面,LEPR缺陷的动物和健康的对照表现出类似的骨基质组成,通过微观CT进行了组织矿物质密度,通过微CT的组织矿物质密度评估,通过数量的反向散射电子成像矿化程度,以及从拉曼低估图像中突破的各种指标。一些特定的微观结构特征,即股骨中的矿化软骨岛和顶骨的高矿化区域,在两组中也显示出可比的分布和特征。总体而言,尽管骨基质成分正常,但LEPR缺陷动物的骨微结构改变表明骨质质量受损。延迟的发育也与具有先兆LEP/LEPR缺乏症的人类的观察者一致,这使该动物模型成为转化研究的合适候选者。
可持续性目前是材料,产品开发和应用开发的主要要求。“可持续生物基础材料:生物医学和工程应用”的书提供了与基于生物的材料有关的多种知识,包括来源,合成和财产。基于生物的聚合物合成,属性和应用。本书专注于基于生物的主要材料,例如纤维素,壳聚糖,丝绸和相关的制造技术和应用。此外,文本还显示了基于生物的材料的工程和生物应用,这将彻底,清晰地显示出读者的思想,以发现和将新报告的技术转化为产品和服务。本书将对基于生物材料的研究生和研究生,工程师,技术人员,医生和研究人员提供帮助和有用。第1-6章全面包含了与基于生物的材料有关的更新信息。生物医学应用,例如矫形器,药物递送,组织工程,可吸收缝合线和传感器。基于燃料电池,能源存储和包装等生物基材料的高级应用是与第12-14章中最近作品的确切描述的。除了在第14-16章中讨论了生物基材料作为生物炼油厂,生物润滑剂,膜和吸附剂的先驱的重要性和应用。它包含有关高级生物材料及其制造技术的细节。文本解决了基于生物材料的研究中合适的数学建模和仿真的重要性。它为读者提供了深入的知识,以便在研究实验室和行业中实施的高级材料和制造技术的帮助,以更轻松,快速,快速,可靠的方式来理解矫形器,牙齿植入物,伤口愈合,抗菌,生物相容性问题。本书适合广泛的读者,包括学者,从业人员,研究生以及在生物医学领域工作的研究人员。
摘要:手术部位感染(SSI)在术后手术过程中经常发生,并且经常用口服抗生素治疗,这可能会引起某些副作用。可以通过将抗菌/抗炎药封装在手术缝合材料中,从而避免这种感染,从而使它们可以在伤口闭合期间更有效地在作用部位作用,从而避免术后细菌感染并扩散。这项工作旨在开发新型的基于生物的抗感染纤维的纱线作为预防手术部位感染的新型缝合材料。为此,使用特殊设计的纱线收集器基于基于飞行的相互缠绕的微纤维(1.95±0.22 µm)的纱线进行原位制造。电纺纱缝合线(直径为300–500 µm)由聚(3-羟基丁酸-CO-CO-3-羟基乙烯酸)制成,具有不同的3HV单元,并包含环氧氟化物(CPX)羟化力(CPX),作为抗虫的抗腐烂药物活性药物(API)。然后通过扫描电子显微镜,傅立叶变换红外光谱,广角X射线散射,差量扫描量热法和体外药物释放来分析纱线。还根据抗菌和机械性能分析了纱线。材料表征表明,不同的聚合物分子结构影响了已达到的聚合物结晶度,该聚合物结晶度与不同的药物洗脱谱相关。此外,这些材料表现出PHBV的固有僵硬行为,API进一步增强了PHBV。最后,所有纱线缝合物呈现出5天的时间释放,均与革兰氏阳性和革兰氏阴性致病细菌相关。结果在这项研究中突出了开发的抗菌电纺纱的潜力,作为预防手术感染的潜在创新缝合材料。