在1996年,本手册的第一版出版时,手术刀和Prolene缝合线是我们专用领域的支柱。我们穿着白色实验室外套和听诊器。未记录或认为是一个主题,并且要求学员在接受奖学金之前完成一般手术居留权,并获得额外的血管手术认证。由弗吉尼亚州东部医学院的临床研究员克里斯托弗·迪克森(Christopher Dickson)编辑,原始手册为术前评估提供了“智慧珍珠”,以及术中和术后术后血管护理。我将原始手册放在外套口袋里。我发现,与旋转的医学生或一般手术居民共享协助患者护理的基本术前和术后护理的掘金很重要。血管内技术正在蓬勃发展。我记得我的一次参加者说:“有一天,我们将推荐开放性血管手术一年。” 2013年,在与Ali Aburahma(M.D.)共同开发了西弗吉尼亚州的第一个奖学金和综合血管计划之后,我们与我们的教职员工合作,更新了本“战斗手册”。现在,从首次出版物开始30年后,我们再次更新了该手册,以反映当今的血管培训和患者护理的演变。今天,“血管内第一”是如此普遍,该方法比开放程序更多的病例。一些计划甚至正在考虑派学员进行开放程序进行额外的培训,就像几年前预测的那样。今天,全国范围内超过50%的学员是女性。受训者不再穿白色夹克,并且在寻找听诊器时经常手持手机。也许最令人印象深刻的是,当原始手册写成时,只有不到5%的血管外科医生是女性。此版本提供了多样化的社论和写作人员,其中包括更多女性,早期职业外科医生,具有军事经验的外科医生和血管学员,这些都是来自不同机构的不同机构,对这些熟悉的主题有新鲜的看法。我们希望本手册在保持其原始作者的愿景的同时提供必要的更新。
中央丝绸委员会(CSB)是一个法定机构,于1948年在纺织品部,印度政府建立,其任务,包括研发,蚕子生产网络,领导角色,标准化以及有关秘密和丝绸行业事务的建议,对各种中央部门计划,silk samagra和Samarth实施各种中央部门计划。在中央丝绸委员会的伞下的159个研究机构和单位的努力朝着全球丝绸领导者前进。会议期间讨论和互动的核心领域包括前和茧后领域 - (a)新兴技术“农场到面料”和丝绸副产品(b)丝绸新颖的应用在化妆品,药品,药品,药物,营养和生物技术,医学和生物技术干预中的丝绸部门(C)在丝绸领域(C)在技术中的界面(C)在技术中的可持续性(D)可持续(D)。该活动在最新技术,创新,趋势和设计,时尚和品牌中,象征着印度纺织品行业的实力,这些技术着重于整个纺织品的价值链。它提供了机会,促进业务,鼓励企业家以及研究合作,以实现2047年愿景目标。印度凭借其优质的丝绸和所有Vanya Silks。,Muga,Eri,Tasar的可用性在全球丝绸地图中占据了骄傲。丝绸,纺织品的女王从纱丽线的短语延伸到医疗治疗中的缝合线,将织物延伸到化妆品。丝绸在非纺织领域的许多领域中进行了广泛的应用,吸引了全球企业家,政策制定者等。SMT。此外,中央丝绸委员会参加了Bharat Tex 2025,“通过丝绸部门赋予女性权能”是CSB的主题馆,展示了从田间到织物的丝绸价值链,并展示了除各种丝绸产品外展示的成功故事。并宣布获奖者并向Bharat Tex 2025年丝绸领域的初创大挑战赛获得奖项。SMT授予了丝绸领域的创业大挑战赛的获奖者。Neelam Shami Rao,IAS,秘书,纺织品,载于15.02.2025。Prajakta L. Verma,IAS,JS-Mot&Shri Ajay Gupta,JS-Mot&CSB&NJB负责人在活动期间分享了DAIS。启动挑战旨在开发丝绸卷轴中可持续和能源/资源有效的过程。国家和国际级别的营销粒度副产品策略
Jhanvi Mehta 1903 /04 A Beaumonte,Kamani Marg,Sion,孟买,印度400022。手机:+91 9820003723电子邮件:jhanvibmehta@gmail.com网站:www.jhanvimehta.com教育孟买苏格兰学校,孟买,印度印度印度学校证书(ISC); 12年级。预计2025年印度中等教育证书(ICSE); 10年级2023年奖项和荣誉l国际化学测验,皇家澳大利亚化学研究所:授予区别2024 l优异证书,以确保95%或以上的总计95.40%(最佳5):10 2023 L Immerse Education Education Essie竞赛,学术论文(生物学):授予300 Gbp 20223 Ltrina ltrama and Drama and Drama&Drama farmage and Drama Collion and Drama; 2013-2023 l优异证书,国际国际象棋竞赛(19岁以下):第二名2023领导县县长,孟买苏格兰学校Mahim-学生会2023-24-通过教师提名任命。- 监督学生纪律,协调平稳,及时的学生到达和分散,有效地执行学校活动,包括运动日和年度日,以及为室内体育和比赛的选择团队。研究和文档负责人,Perseverentia - 跨学校活动2024-新闻承销商,负责撰写节日中15个事件的程序规则,以及一份涵盖每个事件的文章的新闻通讯。- 管理了一支由10名成员副校长组成的团队,孟买苏格兰学校,Mahim -Stem Club 2023-24-带领STEM俱乐部拥有5至12年级的120名成员,组织了简化复杂科学概念的互动活动。- 学习研究论文进行二级研究,引用和汇编的技能。- 促进了每月基于STEM的研讨会,包括Quadcopter,Invisible Ink和磁性保险杠汽车等项目。新闻界的负责人,返回商务,孟买苏格兰学校,Mahim 2023-设计并说明了该学校的“重返商业”新闻通讯,领导了其第一版的制作。印度青年议会副主管,孟买苏格兰学校,马希姆2023年 - 共同领导了一支由25名记者和插画家组成的团队,负责监督内容创建和编辑以进行活动报道。生物学和其他科学 - 研究和经验研究生物POD铸造和研究报告 - “蜂窝故事”,由加利福尼亚大学洛杉矶分校的Trudy Wu指导,2024年至5-10分钟,播客播客播客播放情节,播放播放情节或逐步循环循环调节,皮肤降级,STEM教育,印度与其他疫苗,其他,疫苗,疫苗和疫苗和胡椒粉和胡椒粉。- 讨论情节主题并探索播客作为桥梁学习社区的通用教学工具的研究报告。https://open.spotify.com/show/569z1wbGibneyckno6uOti?si=YEifQVyXRDCky-ia6BvaOg Research Paper – “Investigating How the Depletion of ROS Affects Normal ROS Crosstalk Between the Endoplasmic Reticulum and Mitochondria”, mentored by Ari Broad from Cornell University.2023-撰写了关于线粒体和内质网之间ROS信号传导的文献综述,并由24个学术文章支持。实习Kilitch Drugs India Ltd,印度孟买2024年,一家跨国制药公司和可注射的制造商。- 协助实验室测试进行质量控制,包括滴定,过程监测和高性能液相色谱。- 汇编了有关该过程的报告 - “无菌注射剂是如何诞生的?”,在经理F&d Agilus(SRL)诊断的经理Simi Santosh夫人的指导下,印度孟买的Avinash Phadke博士,2023年,印度2023年提供顶级诊断设施,提供了最古老,最广泛的病理学网络之一。- 了解实验室测试的理解,由实验室操作负责人Sonal Dhawan博士指导的实习。- 分配在立体,免疫学,血液学和临床病理等部门中。通过观察诊断机械的操作来分析患者样品,从而研究了SOP并做了笔记。夏令营Young Scholars计划,印度哈里亚纳邦Ashoka大学科学基金会,2024年 - 校园夏季计划,重点介绍跨科学学科的基础科学概念和跨学科学习。- 讲习班包括果蝇生命周期,带有现实生活标本,用于霓虹灯基因编码的生物技术以及生物学对环境益处的应用。新加坡国立大学新加坡国际科学训练营2022年 - 与国际学生队列互动。 团队合作,促进有关机器人,AI和环境可持续性等主题的辩论。 - 使用凝胶电泳进行了基因测试,以确定一个人的理想睡眠模式和3D打印。 - NUS医院的手术研讨会,在猪上绑上缝合线和见证手术的动手经验。新加坡国立大学新加坡国际科学训练营2022年 - 与国际学生队列互动。团队合作,促进有关机器人,AI和环境可持续性等主题的辩论。- 使用凝胶电泳进行了基因测试,以确定一个人的理想睡眠模式和3D打印。- NUS医院的手术研讨会,在猪上绑上缝合线和见证手术的动手经验。竞争浸入教育论文竞赛,授予300英镑2023年 - 学术论文(生物学),“土壤有机碳在维持农业生态系统中的作用是什么?” - 涵盖了土壤有机碳的各个方面,与土著印度经济和绿色革命的很大程度上的联系以及土壤碳固存。
将材料(通过共价或物理相互作用)加热到与转换域相关的热转变温度T trans (玻璃化转变温度(T g )或熔融转变温度(T m ))以上,并变形成新的形状。将样品冷却到T trans 以下并释放外部应力后,获得临时形状。这种临时形状是稳定的,直到它暴露在热量中并超过转换温度T sw 。如果触发SME,材料将恢复其原始形状。这是一种单向效应,这意味着原始形状不会在冷却时改变。临时形状的固定是由于聚合物网络的网络点(例如半结晶基质内的相变)之外还形成了临时交联。基于该技术,已报道了各种具有复杂功能和能力的材料概念,[2] 例如,在聚(外消旋-丙交酯)-b-聚(环氧丙烷)-b-聚(外消旋-丙交酯)二甲基丙烯酸酯的三嵌段共聚物中,基于聚(外消旋-丙交酯链段)的T g 的经典SME功能可与可降解性相结合。 [3] 除了经典的SME之外,还创建了具有三重或多重形状效应等高级功能的材料。 [1b,4] 与经典SME类似,在三重或多重形状效应聚合物中,临时形状可通过加热逆转。 SME材料在生物医学应用场景中具有巨大潜力,从用于伤口闭合的基于SMP的自紧缝合线到支架或动脉瘤封堵装置。 [5] 由于其改变形状的能力,微创手术的应用场景特别令人感兴趣。 到目前为止,SMP在加热时会变得有弹性。本研究的目的是设计和制造一种与细胞相容的聚合物基网络,该网络具有在组织可耐受的温度范围内的冷却诱导逆 SME (iSME)。对于 iSME,临时形状在材料冷却到 T sw 之前是稳定的。与 SME 类似,iSME 是一次性、单向效应。一旦恢复原始形状,材料就不会再切换回来。即使再次加热,材料仍保持在冷却过程中获得的永久形状。在这方面,iSME 材料不同于软人工肌肉(执行器 [6] ),后者在加热时会失去冷却过程中获得的形状。这种具有 iSME 的生物材料系统的潜在应用有望应用于软组织重建,其中需要以微创方式放置设备。软组织重建面临各种挑战。当前临床上建立的方法基于多种手术
桉树 (小果山桉) 是新南威尔士州 (PlantNET 2024) 接受的物种,属于桃金娘科,在系统发育上属于桉树亚属 Symphyomyrtus,Maidenaria 组,Globulares 系列;Nicolle 2024)。亨特和布鲁尔 (1999) 将其描述为“高达 30 米的乔木。树皮光滑,白色、黄色或乳白色,很少灰色,在高度不超过 1 米的幼树上没有或很少出现树皮。幼茎和小枝通常呈四边形。叶:幼苗叶卵形至椭圆形,长 3-10 厘米,宽 1-3.5 厘米,平,对生,顶端急尖至钝,基部圆形或±尾状,最初具柄,然后少数对无柄,同色;中间叶卵形至披针形,长 12-18 厘米,宽 3-6.5 厘米,近对生至互生,顶端急尖至渐尖,±钩状,基部圆形至±斜;成年叶披针形、镰形或±平,长 9.5-18 厘米,宽 1.2-2.2 厘米,互生,有明显的光泽和深色绿色,边缘全缘,顶端渐尖且常有钩,基部渐狭,急尖或斜,叶柄圆柱状至扁平状,上部微有沟壑,长1-2厘米;脉与中脉成30-45°角,缘内脉距边缘0.5-2毫米,中脉上部有沟壑。腋生伞形花序。每叶腋生花6-7朵;花梗长8-17毫米,宽2-5毫米;花梗在芽期和果期明显,芽期长3-5毫米,果期长2-4.5毫米;芽长球形至棍棒状,在缝合线的上下球状,±1肋,长6-9.5毫米;冠突尖状半球形,急倒锥形或±具喙,长2.5-5毫米,宽2-3.5毫米;托杯长2.5-5毫米,宽2-3.5毫米;花柱圆柱状,长3-4毫米;雄蕊花丝长3.5-5毫米,花药背着,平行,纵裂,长0.4-0.6毫米,白色,油腺圆形,背面。果杯状,具±1条棱,长4.5-8毫米,宽5-8毫米,常一侧裂开;果盘平至下降,宽约1毫米;裂爿3,±平。种子红棕色至黑色。子叶两裂。
海报展示 1 49 (PO-01) Igor Varga - 自动颅骨缝合线检测用于小鼠表型分析 51 (PO-02) Michaela Šímová - 揭示小鼠卵黄囊中红细胞和髓系祖细胞的出现 52 (PO-03) Olha Pyko - 揭示 ZNF644 缺失的影响:研究 C2H2 锌指蛋白在小鼠雌性表型中的作用 53 (PO-04) Rodolfo Favero - 开发和鉴定 Netherton 综合征的条件性 Spink5 基因敲除小鼠模型 54 (PO-05) Hirotoshi Shibuya - 使用新型增强微型 CT 开发高通量、高分辨率软组织成像方法 55 (PO-06) Matilde Vale - 开发用于治疗钻石的治疗性外泌体和基因疗法黑粉病 (DBA) 56 (PO-07) Sabina Cerulová - 最初创建的具有罕见 GALNT3 突变的小鼠模型中钙磷酸代谢失调 57 (PO-08) Zhenni Liu - 探索 GPR45 在代谢调节中的作用及其对肥胖和相关疾病的影响 58 (PO-09) Eni Tomovic - 在捷克儿科患者中检测到的 GRIN 变异的遗传和功能分析 59 (PO-10) Ben Davies - Grem1 (88 kb) 和 Taf1 (166kb) 基因的人类基因组人源化 60 (PO-11) Federica Gambini - 用于 SARS-CoV-2 研究的新型可诱导 hACE2 小鼠模型的表征:对急性感染和长期 COVID 的见解 61 (PO-12) Klevinda Fili - 携带神经发育疾病相关变异的小鼠的表征62 (PO-13) Vera Abramova - 敲除 NMDA 受体 grin2Aa 和 grin2Ab 基因的斑马鱼幼虫的特征:基因表达和游泳行为 63 (PO-14) Hana Kolesová - Jagged1 条件性缺失和基于患者的单一变体小鼠模型的形态学和生理学 64 (PO-15) Petr Nickl - AAV 载体在小鼠植入前胚胎中进行多步等位基因转换 65 (PO-16) Silvia Mandillo - 肌肉特异性基因编辑改善了 1 型肌强直性营养不良小鼠模型中的分子和表型缺陷 66 (PO-17) Kristýna Neffeová - 法洛四联症小鼠模型中 Jagged1 缺失的生理和形态学后果 67 (PO-18) Tomasz Kowalczyk - 蛋白质组学PACS2 基因突变小鼠软组织的分析 68 (PO-19) Dominik Cysewski - PACS2 E209K 突变小鼠脑组织的蛋白质组学和代谢组学分析:深入了解分子失调 69 (PO-20) Betul Melike Ogan - FAM83H 在免疫系统稳态中的作用 70 (PO-21) Maximilián Goleňa - C57Bl/6NCrl 小鼠测量参数的季节性 71 (PO-22) Tobiáš Ber,Kateryna Nemesh - 陆生蛞蝓作为研究 RNA 沉默途径的潜在动物模型 72 (PO-23) Gunay Akbarova-Ben-Tzvi - 修饰的 TGF-β β 家族对整合素-ββ1 合成软骨细胞片的影响 73 (PO-24) Arkadiusz Żbikowski - PACS2 综合征对小鼠肺和肾结构的影响 75 (PO-25) Viktor Kostohryz - 附加基因治疗的前景 76 (PO-26) Miles Joseph Raishbrook - Fam84b 在视网膜稳态中的重要性 77 (PO-27) JI XU - 转录辅阻遏物 TLE1 是脂肪细胞分化的积极因素 78 (PO-28) Sylvie Dlugosova - 骨骼畸形和矿化缺陷Fgf20 KO 小鼠 79
摘要和证据分析:有或不带有缝合线和边缘干细胞移植的人类羊膜移植已有多年用于治疗眼科条件。这些条件中的许多条件很少,导致进行RCT的困难。角膜溃疡和熔体很常见和可变,并且预计不会有其他RCT。在角膜移植后发生主动炎症时,未发现角膜穿孔的证据,需要进行辅助治疗。Khokhar等人(2005年)报道了30例(30眼)患有难治性神经营养的角膜溃疡的RCT,这些患者被随机地进行HAM移植(n = 15)或用tar骨或绷带接触镜头进行常规治疗。在3个月的随访中,HAM组中有73%的患者表现出完全上皮化,而常规组中有67%的患者。Suri等人(2013年)报道了11例没有对常规治疗反应的神经营养性角膜病患者的眼睛。Prokera插入之前的平均治疗持续时间为51天。11例患者中有5名(45.5%)被认为取得了成功。Liu等人(2019年)对角膜溃疡的17项研究(390眼)进行了系统的综述。除1项研究外,所有研究都是在美国以外进行的。有30名患者有1个RCT,其余的研究为前瞻性或回顾性病例系列。角膜愈合。完整的上皮化发生更快,并且在更多的患者中达到了。在报告视力的12项研究(222眼)中,113只眼睛(53%)提高了视力改善率。yin等人(2020年)比较了24例角膜感染性溃疡患者的上皮化和视觉结局,并且视力少于20/200,他们接受了(n = 11)或没有(n = 13)自固定的羊膜膜的治疗。在2018年在其机构中启动了羊膜的利用,从而可以对2个治疗组进行回顾性比较。Suri等人(2013年)还报道了33例33例患者的35只眼睛,这些患者接受了各种眼部表面疾病治疗的患者。九只眼睛有未愈合的角膜溃疡。在有此适应症的9例(22%)患者中有2名(22%)中看到了完全或部分成功。Keirkhah等人(2008年)报道说,在9例有边缘干细胞缺乏缘的患者中使用火腿。患者进行了表面角膜切除术,以去除结膜化的pannus,然后使用纤维蛋白胶进行HAM移植。在7例患者中使用了另外的prokera斑块。除2例患者外,所有人都观察到了视力的提高。Pachigolla等人(2009年)报道了一系列20例接受过眼表面疾病的植入物的患者。 6例患者有水缘干细胞缺乏症,具有化学灼伤史。用Prokera治疗后,6例患者中有3名具有光滑的角膜表面,并将视力提高到20/40。其他3例患者的最终视力为20/400,手指计数或光感知。症状已经存在大约2年。dos Santos Paris等人(2013年)发表了一份RCT,将新鲜的火腿与基质穿刺进行了比较,以治疗大胆的角膜病患者的疼痛。在等待角膜移植或没有眼睛看不见的眼睛的四十例患者患有乳腺癌的疼痛患者被随机分为两种治疗方法。ham在最多180天的随访中导致了更常规的上皮表面,但是与公牛的存在或严重程度或疼痛持续时间有关的处理之间没有差异。由于对疼痛的影响类似,作者建议初始使用较简单的基质穿刺程序,仅在疼痛无法解决的情况下使用HAM。Sharma等人(2016年)进行了一个RCT,该RCT分配了25名患者(50
推荐引用。chan s-y&lau WL(2024)生物多样性记录:蜗牛的人口Tarebia Granifera,许多壳有变形壳。新加坡的自然,17:e2024018。DOI: 10.26107/NIS-2024-0018 ________________________________________________________________________________________________ Subjects: Quilted melania, Tarebia granifera (Mollusca: Gastropoda: Thiaridae).标识的主题:Chan Sow-Yan和Lau Wing Lup。位置,日期和时间:邦戈尔公园新加坡岛; 2023年10月6日;大约1007小时。栖息地:城市公园内的淡水池塘(图1),浅水和相对清澈的水。观察者:Lau Wing Lup。观察:在沿岸的浅水中观察到许多实例实例。13个标本(外壳高度17至25毫米)被随机挑选并检查(图。2)。所有的壳都表现出不同程度的侵蚀。一个例子在壳内唇上具有类似珍珠的钙质生长,以及嵌入在其地幔中的大约1.5 mm直径的松散,圆形,光滑和橙色的珍珠(图3)。其他活人表现出外壳变形,例如1)嘴唇不规则形状或缝隙(图10),2)深层通道或带有圆形孔的缝合线(图9),3)颜色模式的破坏(图6),4)波浪标记(图。3&4),5)部分打开脐带(图7),6)弯曲的尖刺(图4),7)相对于尖顶,膨胀的身体螺纹(图8)和8)标量表(未紧密盘绕)最后一个螺纹(图7)。标本被发现具有粉红色的脚(图11),这是非典型的,因为该物种通常具有灰色,黄色和黑色的颜料(Brandt,1974)。壳没有骨膜的壳往往是棕色或绿色黄色的较浅阴影,某些标本的螺纹上存在斑驳的图案。备注:据信塔雷比亚·格兰尼弗拉(Tarebia Granifera)原产于南亚和西太平洋的一些岛屿。它在非洲,地中海地区和中东以及美洲的热带地区已广泛侵入性。传播归因于水族馆的贸易,甚至归因于鸟类(Yin等,2022),它们在其他地方吃掉并在其他地方(Appleton等,2009)。它是Chan(1996)作为Melanoides Granifera首次在新加坡记录的。塔雷比亚花格兰菲拉(Tarebia Granifera)的人口,大部分在外壳上表现出异常的人似乎是不寻常的,因此很有趣。这些可能是由环境或遗传因素引起的,但是这里涉及哪些因素不能由一般观察结果确定。在非洲的其他地方,Appleton等。(2009)记录了2006年7月从夸祖鲁 - 纳塔尔省NSeleni河收集的749个个体(样本0.3%)的两个畸形的Tarebia Granifera标本。他们的身体螺纹相对于尖顶异常膨胀。与此处所示的标本相比,它们也更小(外壳高度10.9和15.4毫米)。Zoologische Mededelingen,83:525–536。引用的文献:Appleton CC,福布斯AT&demetriades NT(2009)在南非,入侵性淡水蜗牛Tarebia Granifera(Lamarck,1822年)的发生,繁殖和潜在影响(Astropoda:Thiaridae)在南非。Brandt Ram(1974)泰国的非海洋水生软体动物。 Archiv Fur Molluskenkunde,105:1-423。 Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Brandt Ram(1974)泰国的非海洋水生软体动物。Archiv Fur Molluskenkunde,105:1-423。Chan Sy(1996)新加坡的一些淡水腹足类动物。 海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.Chan Sy(1996)新加坡的一些淡水腹足类动物。海洋和岸,184-187。 Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.海洋和岸,184-187。Yin N, Zhao S, Huang X-C, Ouyang S & Wu X-P (2022) Complete mitochondrial genome of the freshwater snail Tarebia granifera (Lamarck, 1816) (Gastropoda: Cerithioidea: Thiaridae), Mitochondrial DNA Part B, 7:1, 259– 261.
