图1:模型和纯化动力学(a)具有L = 6个系统Qubits的电路的示意图,N G = 6个两倍的门,2个Z-测量和1 x测量。第一个xx门用系统量子串将引用缠绕。接下来,我们扰乱了系统。统一测量动力学的时间演变始于红色虚线。概率测量将推迟到电路结束,并使用系统量子和测量值之间的cnot门结束。在第三个XX门之后显示X-BASIS测量。最后,应用反馈操作U f(请参阅补充材料)(b)两个L = 6个电路的参考量子熵,其中参考Qubit保持混合(上图)和纯净(下图)。x轴显示了拼凑完成后施加的两倍门(n g)单位的时间的演变(再次由红色虚线表示)。在此示例中,熵是通过在X,Y和Z -BASIS中进行测量来测量参考的单Qubit断层扫描来测量的。误差线(1σ)小于标记,分别具有4000和10000的实验和仿真照片。缺少实验数据是由于离子丢失事件引起的,这与所采集的数据无关。
在 PPMT 电机中,转子类似于传统的可变磁阻电机 (VRM)。VRM 通常用于步进电机。与 VRM 一样,PPMT 电机的转子是高磁导率铁层压板,转子上没有线圈或磁铁。这就是它与 VRM 的相似之处。与 VRM 不同,PPMT 电机的定子部分包括永磁体。对于每对磁铁,定子上缠绕有两个线圈。在传统的 VRM 中,线圈缠绕在每个定子极上,电流流过这些线圈产生的磁通用于产生扭矩。在 PPMT 电机中,永磁体磁通加上负载电流产生的感应磁通相加产生轴扭矩。定子线圈切换的适当时机可优化扭矩。线圈提供磁通控制服务,在适当的时间将永磁体的磁通引导到适当的极点以产生扭矩。由于永磁通量产生的补充功率,所需的输入功率远低于传统电机产生每磅扭矩所需的功率。因此,PPMT 电机效率更高。PPMT 电机在连续工作应用中具有出色的性能。与传统电机的连续工作额定值相比,PPMT 电机比任何传统设计都更轻、更小、效率更高。
粒子组件的量子力学描述仅限于两个(或一个)空间尺寸的粒子的组件,提供了许多与玻色子和费米子不同的可能性。我们称之为这样的粒子。最简单的Anyons通过角相参数θ进行了参数化。θ= 0,π分别对应于玻色子和费米子。在Intermedi-Ate值中,我们说我们具有分数统计数据。在二维中,θ将波函数获取的相描述为两个逆时针旋转的彼此缠绕。它为相对角动量产生允许值的变化。与Abelian U(1)量规组相关的局部电荷和磁通量的复合材料实现了这种行为。更复杂的电荷升华结构可能涉及在允许的电荷和通量范围内的非亚伯和产品组,从而产生非亚伯和相互统计。nonabelian Anyons的互换在内部状态的新兴空间内实现了波函数的单一转换。各种各样的人都用包括Chern -Simons项在内的量子场理论来描述。环上的一维Anyons的交叉点是单向的,因此互换时获得的分数相θ产生了Anyons之间相对动量的分数移动。最近,在ν= 1/3中的准粒子预测的Anyon行为< / div>
摘要:铁路场景的理解对于各种应用程序至关重要,包括自主火车,数字缠绕和基础设施变更监控。但是,后者的开发受到现有算法缺乏注释的数据集和局限性的限制。为了应对这一挑战,我们提出了铁路3D,这是铁路环境中语义细分的第一个综合数据集,并进行了比较分析。Rail3D涵盖了来自匈牙利,法国和比利时的三种不同的铁路环境,捕获了各种各样的铁路资产和条件。有超过2.88亿个注释点,Rail3D超过了大小和多样性的现有数据集,从而可以训练可概括的机器学习模型。我们进行了一个通用的分类,该分类使用了九个通用类(地面,植被,铁路,电线,信号,围栏,安装和建筑物),并评估了三种最先进模型的性能:KPCONV(内核点卷积),LightGBM和随机森林。最佳性能模型,一种经过的kPCONV,在联合(MIOU)上达到了平均值为86%。基于LightGBM的方法获得了71%的MIOU,但表现优于随机森林。这项研究将通过为3D语义细分提供全面的数据集和基准,从而使基础设施专家和铁路研究人员受益。数据和代码可公开用于法国和匈牙利,并根据用户反馈进行连续更新。
测量特殊尺码服装时,务必考虑以下几点:姿势:站直,肌肉放松,双脚分开与臀同宽(约 6 英寸)。衣着:宽松或厚重的衣服会影响测量的准确性。确保服役人员穿着轻便、贴身的衣服。同样,女性胸围测量在穿着合身的无衬垫胸罩(不是运动胸罩)时最准确。工具:使用柔韧的金属卷尺,因为布卷尺可能会拉伸。玻璃纤维或尼龙卷尺是不错的替代品。技巧:a. 除以磅为单位的体重外,所有测量值都应以英寸为单位,并精确到最接近的 ¼ 英寸。b. 进行水平测量时,例如胸围、腰围、臀围等,请确保卷尺与地面平行。c. 测量时,对卷尺施加恒定的压力(使其不会下垂),不要捏皮肤。因为身体是由软组织构成的,所以很难确切知道将卷尺拉到身体周围的紧度。卷尺应该稍微贴紧,但不要太紧——它不应该“卡在”身体上或在身体上留下凹痕。它也不应该太松。只需将卷尺缠绕在要测量的身体部位并将其固定到位即可。卷尺后面应该可以放一根手指,但不能超过这个长度。
STORT 是 DLR 的一个项目,专注于在相对较长的时间内测试高超音速飞行(马赫数高于 8)的关键技术。该项目的总体目标是支持降低未来太空运输系统的成本,同时保持其高度可靠性。为此,未来发射系统所有阶段的可重复使用性是先决条件。对于第一级,8-10 马赫数似乎是最佳分级速度,这意味着需要开发和验证以这些速度返回第一级飞行的技术。因此,STORT 旨在实现代表可重复使用第一级在 8 马赫时进行这种高能再入飞行的运行条件,以支持优化和验证未来太空运输系统开发技术和模拟工具。因此,本文描述了火箭前体组件的设计、制造和集成,直至发射。此外,还概述了从热保护系统传感器收集的飞行数据。前机身热保护系统需要使用陶瓷基复合材料来保护机身免受飞行过程中的高热负荷。在本例中,热保护系统由 DLR 内部制造的 C/C-SiC 复合结构组成。主要元件是一个锥形机头元件和四个通过碳纤维纤维缠绕制造的薄壁壳体段。通过现场连接工艺,由 CMC 材料制成的整体固定支架永久固定在壳体上。连接热保护系统结构的底层前机身主结构由铝制成。
12.2解锁DNA的秘密DNA分子必须以某种方式指定蛋白质的组装,蛋白质会调节细胞功能,而不会因细胞而变化。了解DNA的结构对于掌握基因的工作方式至关重要。DNA是一种由共价键连接为长链或链的核苷酸的核酸。核酸是最初在细胞核中发现的略微酸性分子。它们由形成长链的核苷酸组成。DNA的核苷酸由三个组成部分:脱氧核糖,磷酸基团和氮基。后者有四种类型:腺嘌呤(a),鸟嘌呤(G),胞嘧啶(C)和胸腺素(T)。这些基部从链条向侧面突出。可以按任何顺序排列碱的顺序,从而允许多种组合。科学家使用了多个线索来解决DNA的结构。富兰克林的X射线图案显示出一个X形图案显示出扭曲的链,表明两条链和一个角度,指示中心附近的氮基。Watson和Crick使用这些线索建立了三维模型,最终创建了双螺旋模型。双螺旋螺旋解释了夏尔加夫的基本配对规则以及两条线如何缠绕在一起。这个突破模型帮助科学家掌握了DNA的特性和功能。DNA的双螺旋结构由两条链组成,它们像螺旋楼梯一样互相扭曲。
EM42 Advanced Manufacturing Branch *********************************************************** The Advanced Manufacturing Branch, EM42, has two teams: the Additive Manufacturing and Digital Solutions Team (AMDST) and the Advanced Composites Manufacturing Team (ACMT).AMDST提供了整个产品生命周期的各种功能和服务。该团队的主要功能是增材制造,数字制造,结构化的轻扫描,制造执行系统以及支持硬件开发和制造的各种其他数字工具。ACMT使用可用于私人行业的最先进方法提供了高级复合材料结构的开发。这包括:纤维放置,胶带铺设,丝状缠绕,压缩成型,树脂输液,真空包装手袋上篮,烤箱固化和高压灭菌器固化。该团队还提供其他不同的功能和服务,包括用于辐射屏蔽和火箭喷嘴的材料开发,以及提供高压灭绝,步入式冷却器和冷冻机。这些团队能够提供工程解决方案,制造开发以及最复杂的大小和形状的全尺寸硬件生产。团队经验从测试和飞行文章到使用现场设备的制造增强和材料开发。现有的资源和设施已用于许多NASA,私营企业以及其他政府机构的计划,项目和任务。随着协作工作的扩大和能力,该组织设备齐全,并具有合适的人员组合和专业知识,以有效地响应当今负担得起的制造要求的需求。EM42高级制造分支机构联系人Majid Babai先生,分支部长Majid.K.Babai@nasa.gov,256–544–2795 Steven Burlingame先生
1. 美国和巴特尔纪念研究所。(2003 年)。MMPDS-01:金属材料性能开发和标准化 (MMPDS)。华盛顿特区:联邦航空管理局。2. “聚合物基复合材料”,国防部手册,MIL-HDBK-17-1F,第 2 卷,第 1 章。 4,2001 年 12 月 12 日。 3. “结构胶粘剂的剪切应力-应变数据”,DOT/FAA/AR-02/97,航空研究办公室,华盛顿特区 20591,2002 年 11 月。 4. “薄壁圆柱体的屈曲”,NASA 太空飞行器设计标准(结构),NASA SP-8007,1968 年修订。 5. “薄壁双曲壳的屈曲”,NASA 太空飞行器设计标准(结构),NASA SP-8032,1969 年。 6. Chamis,CC,“多层纤维复合材料分析的计算机代码 - 用户手册”,NASA TN D-7013,1971 年 3 月。 7. Newport Adhesives and Composites,Inc.(20013),“350°F固化高 Tg 热熔 Towpreg HMT6600” [产品数据表]。检索自 http://000vbs.rcomhost.com/wordpreaa1/wp- content/uploads/2013/10/PL.HMT6600.022713.pdf 8. 2010 ASME 锅炉和压力容器规范,第 VIII 节,第 3 部分,“压力容器建造规则”。9. “Delta-Axisymmetric 模式生产的纤维缠绕球形压力容器中的应力分析”,报告 Y-1972,Oak Ridge Y-12 工厂,田纳西州橡树岭,1972 年 8 月。
近年来,通过氢键、疏水作用、π-π作用及静电作用等构建了亲水聚合物水凝胶,由于其良好的弹性、生物黏附和生物相容性等特性,在生物和医学领域得到了广泛的应用。杨建军研究组设计了一种具有靶向功能的紫杉醇水凝胶,将叶酸作为靶向基团引入凝胶体系,通过均匀的纳米球交织构成三维网络,得到小分子水凝胶,该水凝胶中紫杉醇的载药量可达49.4%,高于许多药物递送系统的包封量。徐建军研究组利用过表达酯酶的宫颈癌细胞,合成了受酯酶影响的多肽分子。这些分子可以进入细胞并自组装成纳米纤维,然后纳米纤维相互缠绕形成水凝胶,导致宫颈癌细胞死亡。8然而,以两亲性小分子为代表的这些水凝胶不可避免地需要较高的温度才能形成凝胶,这限制了它们作为大分子药物(蛋白质、基因等)的载体的应用。环糊精(CD)是一种大环化合物,具有良好的水溶性和生物相容性,因此,它因与有机和生物基质的特定结合而备受关注。由CD构建的超分子水凝胶已广泛应用于环境响应