二氧化碳去除(CDR)技术,例如直接空气碳捕获和捕获和DACCS,对于限制下一世纪平均全球温度的上升至关重要。扩展DACCS技术需要在多个重叠的策略领域(例如气候,能源,技术创新和资源管理)上支持复杂的政策和基础设施。关于DACC和其他CDR技术的文献承认政策制定的路径依赖性,但它倾向于专注于没有植根于实施状态的特定政治,社会和身体(基础设施)环境的抽象政策处方。为了解决这一差距,本文提供了对加拿大新兴DACCS政策制度的国家级研究。利用现有的文献确定了支持DACC开发和有效法规的理想化(神秘)政策目标,我们确定了跨六个问题领域的可行政策目标:一般气候缓解策略;能源和资源限制;碳存储和运输调节和基础设施;筹集资金扩大和支持创新;删除和捕获技术的可用性和法规;并解决社会可接受性和公共利益。使用加拿大气候政策的数据库(n = 457),我们确定了加拿大(联邦和省级)政策环境中的政策,将这些策略映射到这些域中每个域内理想化的政策目标。本练习使我们能够分析加拿大系统中如何代表DACCS开发的关键政策目标,并使我们能够识别系统内部的潜在壁ni和景观影响,以及系统过渡过程的差距和潜在障碍。本文通过提供一个框架来识别DAC系统的组成部分,并将这些组件与所需的政策成果联系起来,从而有助于我们对国家DACC政策制定的理解,并可能为未来的跨国比较提供基础,以对国家级DACCS政策进行越野比较。
图1:跨LMS多个模型体系结构的缩放定律的示例。缩放定律适用于计算,训练数据大小和参数在各种模型中稳健计数。黑线表示合适的权力定律。最初来自(Kaplan等人(2020))。
Hulick博士是Janardan D. Khandekar,医学博士,个性化医学主席兼医疗遗传学部门主席(以前是Northshore),该主席将遗传分析应用于预防,诊断和治疗遗传性疾病和疾病。他于2008年加入努力健康,担任医学遗传学的主治医生,于2012年成为医疗遗传学部门,并在2022年任命主席之前成为Mark R. Neaman个性化医学中心的医疗总监。Hulick博士还担任芝加哥普里茨克大学医学院人类遗传学系的临床副教授。以前,他曾在马萨诸塞州波士顿的马萨诸塞州综合医院担任医学遗传学医师。他是美国医学遗传与基因组学委员会(ABMGG)的当前当选主席。他撰写或合着了70多个同行评审的期刊文章和书籍章节。Hulick博士于2001年从杰斐逊医学院获得医学学位。他在圣卢克医院(Mayo Clinic)完成了内科住院医师,并在哈佛医学院完成了医学遗传学的临床研究金。他还于2007年从哈佛医学院获得医学硕士学位。
更广泛的上下文建筑物占美国所有能源使用的近40%。加热(空间和水加热)和冷却(空间冷却和制冷)是建筑能源的两个最终用途,并且预计空调能源消耗的速度将比任何其他用途都快。要实现更环保和经济可持续的未来,建筑环境中的热管理必须变得更加有效,更便宜。但是,当最不足的情况下,通常需要热管理。例如,在一天中最热门的部分中需要空调,但这也是最不足的时候。理想情况下,空调将在晚上运行,当冷却周期有效并且电力便宜时。可以通过“热电池”来克服此不匹配,其中材料存储热量(或冷却),然后将其排放到热负载中。这不仅可用于建筑环境中的热管理,还可以用于发电厂中的储能。但是,现有的热电池很昂贵,从而阻碍了其采用。在这项工作中,我们开发了一个框架,以优化系统设计并选择最大程度地降低热电池成本的存储材料。