将纳米反应器和前药相结合的协同策略在抗癌治疗中具有巨大潜力。然而,由于缺乏复杂的癌症靶向策略,精确杀死目标癌细胞仍然是一个重大挑战。这里报道了一种双靶向方法,该方法结合了产生 H 2 O 2 的叶酸受体靶向纳米反应器和环氧合酶-2 (COX-2) 靶向前药的作用。制备了一种封装葡萄糖氧化酶 (GOX) 的叶酸修饰二氧化硅纳米反应器以产生 H 2 O 2,其诱导氧化应激并允许通过靶向细胞内递送激活前药。提出了一种新型前药,其同时带有 COX-2 靶向塞来昔布和 SN-38 抗癌剂以及可由 H 2 O 2 裂解的硫缩酮连接体以激活药物。通过双重靶向,GOX 产生的 H 2 O 2 可触发前药中硫缩酮连接体的裂解,从而在癌细胞中产生 SN-38 抗癌药物的活性形式,诱导协同细胞死亡。这种具有协同效力的双重靶向策略有助于开发选择性和有效的抗癌疗法。
胶质母细胞瘤 (GBM) 是脑部最常见、侵袭性最强的原发性肿瘤,确诊患者的平均预期寿命仅为 15 个月。因此,迫切需要更有效的疗法来治疗这种恶性肿瘤。包括癌症在内的多种疾病都以高水平活性氧 (ROS) 为特征,这可能是 GBM 的标志,可作为靶向或从中受益。因此,可以利用药物与 ROS 响应分子的共价连接,旨在在相关病理环境中选择性释放药物。在这项工作中,我们设计了一种新的 ROS 响应性前药,通过使用美法仑 (MPH) 与甲氧基聚乙二醇 (mPEG) 通过 ROS 可裂解基团硫缩酮 (TK) 共价偶联,展示了自组装成纳米级胶束的能力。对聚合物前药和适当的对照进行了全面的化学物理表征,并对不同的 GBM 细胞系和“健康”星形胶质细胞进行了体外细胞毒性试验,证实了该前药对健康细胞(即星形胶质细胞)没有任何细胞毒性。将这些结果与非 ROS 响应性对应物进行了比较,强调了 ROS 响应性前药对表达高水平 ROS 的 GBM 细胞的抗肿瘤活性优于非 ROS 响应性前药。另一方面,将这种 ROS 响应性前药与 X 射线照射联合治疗人类 GBM 细胞可增强抗肿瘤效果,这可能与放射疗法有关。因此,这些结果代表了合理设计创新和定制的 ROS 响应性前药的起点,用于 GBM 治疗和与放射疗法联合使用。
摘要:针对癌细胞无法适应代谢应激这一问题,是传统癌症化疗的一种有前途的替代方法。FTY720(Gilenya)是一种经 FDA 批准用于治疗多发性硬化症的药物,最近有研究表明,它可通过下调必需营养转运蛋白来抑制癌症进展,从而选择性地饿死癌细胞。然而,FTY720 在给药时发生磷酸化时,可能会引发免疫抑制(淋巴细胞减少症)和心动过缓,因此禁止在临床上使用 FTY720 进行癌症治疗。通过酸可裂解的缩酮键,用聚乙二醇 (PEG) 封端其羟基,合成了一种前药,可特异性地防止循环过程中发生磷酸化,从而避免心动过缓和淋巴细胞减少症。聚乙二醇化还提高了水溶性。前药在细胞摄取后还原为完全有效的 FTY720,并在癌细胞中诱导代谢应激。已证实 FTY720 在弱酸性内体 pH 下释放增强,并且仅通过酸裂解药物即可显著下调白血病细胞中的细胞表面营养转运蛋白。重要的是,该前药在 BCR-Abl 驱动的白血病动物模型中表现出与 FTY720 几乎相同的功效,而不会在体内诱发心动过缓或淋巴细胞减少,突出了其潜在的临床价值。FTY720 的前药配方展示了通过解决特定分子机制来精确设计药物以避免不良影响的实用性,以及在经济上有利的新药开发替代方案。可以探索多种现有的癌症治疗剂的前药配方,以避免特定的副作用并保持或增强治疗效果。■ 简介