马萨诸塞州临床研究所和哈佛医学院的马萨诸塞州综合医院心脏病学部; B密西西比大学医学中心,美国密西西比州杰克逊;美国德克萨斯州达拉斯市的贝勒·斯科特和白人研究所; D跨学科中心“健康科学”,意大利PISA Sant'anna高级研究学院;艾伯塔大学艾伯塔大学心脏病学系; F BRIGHAM和妇女医院,哈佛医学院,
通过对不同长度 (L) 的线路进行实验,在不同的电流密度 (j) 下施加应力,并使用技术上可行的三级结构,研究了双大马士革铜互连中的电迁移短长度效应。这项调查是对成熟的双大马士革铜工艺后短长度效应的完整研究。使用寿命测量和随时间变化的电阻衰减来描述这种现象。已经发现,随着电流密度-长度乘积的减小,对数正态分布的 sigma 会增加。临界体积的统计分布很好地符合 sigma 曲线。由于背应力引起的 TTF(失效时间)分散,较低的 jL 2 值显示较大的 sigma 值。提出了一个简化方程来分析特定温度下电流密度和线长的各种组合的实验数据。所得的阈值长度乘积 (jL) C 值似乎与温度有关,在 250-300 C 范围内随温度升高而降低。 2007 Elsevier Ltd. 保留所有权利。
Lydon,J。&Duke,S。,《植物农药的潜力》,pp。1-41在Craker,L。&Simon,J。,编辑,草药,香料和药用植物:植物学,园艺和药理学的最新进展,v。4,Oryx Press,Phoenix,Phoenix,1989,267ppp。1-41在Craker,L。&Simon,J。,编辑,草药,香料和药用植物:植物学,园艺和药理学的最新进展,v。4,Oryx Press,Phoenix,Phoenix,1989,267ppp。
位于小鼠大脑皮层中的原生质星形胶质细胞(PRA)紧密并置,在成人阶段形成了明显连续的三维基质。到目前为止,没有免疫染色策略可以将它们单一单一的策略和在成熟动物和皮质生成过程中的形态进行分割。皮质PRA起源于背胸膜中的祖细胞,可以轻松地使用整合载体的子宫电穿孔来靶向。这里提出了一项方案,该方案将这些细胞用可抑制基因组融合的颜色(魔术)标记策略标记,该策略依赖于PiggyBac/ tol2换位和CRE/ LOX重组以随机表达明显的荧光蛋白(蓝色,氰基,黄色和红色),以特定于特异性的亚细胞界面。这种多色命运映射策略使在胶片发生开始之前与颜色标记物的结合可以标记附近的皮质祖细胞,并跟踪其后代,包括星形胶质细胞,从胚胎到各个细胞水平的成人阶段。半parse标记通过调整电穿孔矢量的浓度和颜色对比度的浓度,该颜色可通过多种基因组整合的颜色标记(魔术标记或MM)提供,使星体胶质细胞个性化并将其领土和复杂的形态单一单一单一单一单独化。是一个全面的实验工作流程,包括电穿孔程序的详细信息,通过共聚焦显微镜进行多通道图像堆栈以及计算机辅助的三维分割,这将使实验者能够评估单个PRA的体积和形态。总而言之,魔术标记的电穿孔提供了一种方便的方法,可以单独标记许多星形胶质细胞并在不同的发育阶段访问其解剖特征。该技术对于分析各种小鼠模型中的皮质星形胶质细胞形态特性将是有用的,而无需诉诸于具有转基因报告基因的复杂杂交。
醛酮还原酶 1C3 (AKR1C3) 是一种在前列腺癌、血液系统恶性肿瘤和其他癌症中上调的蛋白质,它会导致增殖和化疗耐药性。雄激素受体剪接变体 7 (ARv7) 是 AR 受体最常见的突变,它导致去势抵抗性前列腺癌对临床雄激素受体信号抑制剂产生耐药性。AKR1C3 与 ARv7 相互作用促进稳定。我们在此报告了同类首创的 AKR1C3 蛋白水解靶向嵌合体 (PROTAC) 降解剂的发现。这种第一代降解剂有效降低了 22Rv1 前列腺癌细胞中的 AKR1C3 表达,半最大降解浓度 (DC 50) 为 52 nM。令人欣慰的是,观察到 ARv7 同时降解,DC 50 = 70 nM,同时 AKR1C3 同工型 AKR1C1 和 AKR1C2 降解程度较小。该化合物是一种非常有用的化学工具,也是前列腺癌干预的有前途的策略。
在HCHO处理的LN-18细胞中进行了分析,揭示了天冬酰胺消耗的证据,尽管效果比HEK293T细胞弱(图S5†)。该观察结果至少部分是由于使用非二元胎牛血清的使用,该胎儿血清含有相对较高的天冬水平。与此相一致,与非二元胎儿牛血清一起孵育的HEK293T细胞未观察到氨基酸的耗竭(图S6和S7†)。半胱氨酸分别与HCHO和ACH反应,分别给出硫脯氨酸和2-甲基噻唑烷-4-羧酸(MTCA)(图1)。9,10,27用HCHO或ACH对HEK293T细胞的处理分别导致硫丙啉和MTCA水平升高(图1b)。在HCHO处理的LN-18细胞中也观察到了硫代丙烯的形成(图S5†)。在血28和人类寄生虫中报道了半胱氨酸和ACH对MTCA的反应; 29这里提供的证据还表明,MTCA可能发生在人类细胞中。半胱氨酸-MGO加合物不是
摘要:非系留子尺度模型测试,通常称为子尺度飞行测试,传统上在航空研究和开发中用途较小,但意义重大。随着电子、快速成型和无人机技术的最新进展扩大了其功能并降低了成本,这种实验方法在学术界和业界越来越受到关注。然而,子尺度模型不能满足模拟全尺寸飞行所需的所有相似性条件。这导致了各种缩放方法和其他替代应用。通过文献综述和对不同缩放策略的分析,本研究全面介绍了近年来子尺度飞行测试的使用情况,并综合了其主要问题和实际局限性。结果表明,虽然在某些飞行条件下估计全尺寸特性仍然是一个有趣的应用,但子尺度模型正逐渐发挥更广泛的作用,成为具有宽松相似性约束的低成本技术测试平台。通过飞行实验,讨论和评估了作者和其他组织实施的解决已发现的实际挑战的不同方法。
资金:这项工作得到了癌症生物学培训授予NIH T32 CA059366(授予ARS),Ruth L. Kirschstein Postdoctoral Nrsa NIH NIH F32 CA287655(to ARS)和中西部Brain Tumor Foundation,以及中西部Brain Tumor Foundation Postophip(to Ars),nih ih ih ih ih ih h。这项工作也得到了Lerner Research Institute(SJC,JDL)和案例综合癌症中心(JDL)利益冲突的支持:作者宣布没有利益冲突。JDL被列为与癌症疗法有关的知识产权发明者,但这与这项工作无关。作者身份:ARS,JDL概念化了项目; ARS,AJG,AK完成了分析;所有作者都参加了手稿的写作和审查。致谢:作者感谢Erin Mulkearns-Hubert博士的编辑协助和Reza Khatib博士的灵感和支持。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。