缺失序列:在功能上表征高度保守的DNA的物种特异性缺失。生物学中剩下的一个主要问题是基因组中的基本物种差异是如何编码的。基因组序列技术最近才能比较数百种物种的高质量基因组。然而,由于三个原因,很难解释定义物种的基因组区域:1)准确的基因组比较和比对在计算上是密集的; 2)搜索空间很大,仅哺乳动物就有数百万的可排列碱具不同; 3)这些序列差异主要是在难以预测功能的非编码的,潜在的基因调节区域中。一组可以实验的基因组元素是保守的缺失(Condels) - 由于其强烈的序列保守1所示,该区域显示了功能证据的区域1。condels可能具有独特的信息,因为它们可能会导致缺失驱动的物种特异性功能。首先,我将基于高通量全基因组对齐方式开发新的计算方法,以识别数百种物种的der孔,从而大大扩展了物种特异性基因组元素的目录。使用此新增强的数据集,我将使用大量并行的记者测定法(MPRA)测定多个哺乳动物的100,000多个秃鹰的功能。最后,我将通过识别condels子集的差异结合的转录因子来探讨condel函数如何内源性(图1)。这将使我们和其他研究人员开始审问序列变化和物种形成的相互作用。AIM 1:在计算上识别哺乳动物基因组中的秃鹰及其潜在影响。首先,我将为几种不同的脊椎动物创建对齐方式,以识别特定物种的缺失。虽然已为人类和小鼠等普通物种产生了整个基因组,但已经生成了比较多样的一致性,但锚定在各种分类单元上的组件,这些分类群缺乏各种焦点物种中的缺失。i将使用29个哺乳动物项目和脊椎动物基因组项目中的新基因组建立多个对齐,从卵形群到人类2,3。对于这157种,我将使用每个物种最接近所有其他基因组的多样对齐,从而产生一系列保守元素的列表,这些元素被预测存在于其最新的共同祖先4,5中。目标物种将被排除在此分析之外,以免偏向哪些区域被识别为保守。然后,我将建立一个成对的对准,以识别特定于物种4的缺失。云计算使得将整个基因组对齐方法缩放到可行的数百种新可用的基因组。使用这种高度详细的脊椎动物秃鹰目录,接下来,我将确定影响基因调节性特征和基因表达的秃鹰的子集,进而确定表型。为了识别物种特异性的调节元件重叠的秃鹰,我将首先比较20个哺乳动物6的现有基因调节图,重点是肝脏,因为该组织具有最多的跨物种功能数据。AIM 2:使用高通量报告基因测定法测试来自多个物种的秃鹰。我还将使用组织匹配的转录组数据6将这些秃鹰与整个基因组中的基因表达相关联,因为调节元素可以长距离起作用。虽然大多数调节性和表达变化被预计会导致功能丧失,但在某些情况下,变化可能会删除抑制性调节序列,从而导致功能增长。i将比较condels do的秃鹰,而不是不显示肝脏对调节作用的证据,寻找序列年龄,复杂性,基因组位置或其他功能进化模式的差异。如果我的计算管道失败,我可以调查已发布的1,较小的condel集与最近发表的基因调节数据集7的相关性。在随后的随访中,我可以在人类和小鼠7中使用已经存在的全身调节图富含dy的其他组织,以扩展到肝脏之外。预测非编码元件的潜在功能很困难,因为没有类似于蛋白质编码密码子字母的“语法”。但是,像大量平行的报告基因测定法(MPRA)这样的新的高通量测定法使我们能够直接测量> 50,000个序列构建体对基因表达的单个影响。mpra是一种偶发测定
• 令人惊讶的是,人们会期望这样一个基本概念会在构成《盟军联合条令》的 50 多种盟军联合出版物 (AJP) 或《综合作战计划指令》xiii 中引入并彻底定义。不幸的是,很难找到这样的定义,或者更确切地说,很难找到与我们在此处讨论的内容一致的定义,即作战领域,例如陆地、海洋、空中、网络、太空。然而,在 COPD 第 26 页第 1-7 段“交战空间”中,可以找到“北约目前在 PMESII 结构下认可的六 (6) 个领域”的介绍。这六个领域是 (1) 政治、(2) 军事、(3) 经济、(4) 社会、(5) 基础设施、(6) 信息。有趣且完全相关的概念,但显然属于不同种类,并且与我们的陆地、海洋、空中、网络和太空领域处于不同的层次。
摘要 —帕金森病 (PD) 是最常见的神经系统疾病之一,长期以来一直是公共卫生临床诊断和科学理解方面的挑战。最近,人们对脑网络分析的兴趣激增,这有助于广泛了解大脑功能并早期发现神经系统疾病。可以构建具有不同感兴趣区域 (ROI) 连接模式的多视图脑网络,以反映脑连接概况的不同和互补视角。然而,这种多视图脑网络的提取依赖于多种神经成像模态的可用性和繁重的数据预处理,这通常会导致任一视图中数据严重缺失。跨视图缺失问题阻碍了多视图表示学习和下游分析的实用性。在这项工作中,我们提出了跨视图脑网络生成的新问题,并提出了 CroGen,这是一种图形生成模型,当仅给出一个视图时,它可以生成缺失的视图。具体来说,GroGen 利用了同一个体脑网络不同视图之间的潜在相关性。此外,我们设计了一个预训练方案,以充分利用仅具有单一脑网络视图的标记个体。对现实生活中的帕金森病进展标志物倡议 (PPMI) 队列进行的大量实验证明了 CroGen 在跨视图生成任务和下游 PD 分类方面都比基线更有效。索引术语 — 多视图网络分析、跨视图网络生成、基于脑网络的疾病分类
我们的目标是让诺福克的所有儿童充分发挥他们的潜力,并尽早满足他们的需求。所有儿童,无论其情况如何,都有权接受适合其年龄、能力、才能和任何特殊教育需求的教育。失学或面临失学风险的儿童容易出现学业成绩不佳,并有可能在以后的生活中失去教育、就业或培训 (NEET)。他们还可能面临虐待和剥削的风险。在大多数情况下,学生离开学校之前都会与学校进行计划和讨论。家长、学校和地方当局之间有效的信息共享对于确保所有义务教育年龄的儿童安全并接受适当的教育至关重要。本政策概述了地方当局如何履行其根据《1996 年教育法》第 436A 条所承担的法定义务,即尽可能做出安排,以识别失学儿童 (CME)。它提供了一个框架,旨在: ▪ 限制儿童失学的可能性; ▪ 确保各机构共同努力,共享信息以识别、定位、保护
beta。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 beta_meta。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 custom_anno_example。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3评估性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 extract_values。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 GENTAMISSINGINGDATA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 Inv.Plogit。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6甲基2。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6甲基2_internal。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 Inv.Plogit。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6甲基2。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6甲基2_internal。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6甲基2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6甲基2_internal。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>8 Pinvr。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 9 pologit。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 10 split_by_choromoesomes。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8 Pinvr。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9 pologit。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>10 split_by_choromoesomes。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。10
人类脑肿瘤,更具体地说是神经胶质瘤,是最危及生命的癌症之一,通常由神经胶质干细胞异常生长引起。实际上,磁共振成像 (MRI) 模态提供不同的对比度来阐明组织特性,提供有关大脑结构的全面信息以及检测肿瘤的潜在线索。因此,多模态 MRI 通常用于诊断脑肿瘤。然而,由于获取的模态集可能因临床部位而异,脑肿瘤研究可能会遗漏一两种 MRI 模态。为了以端到端的方式解决缺失信息,我们提出了 MMCFormer,一种新颖的缺失模态补偿网络。我们的策略建立在 3D 高效转换器块之上,并使用共同训练策略来有效地训练缺失模态网络。为了确保多尺度特征一致性,MMCFormer 在编码器的每个尺度上都使用全局上下文一致性模块。此外,为了传输特定于模态的表示,我们建议在瓶颈阶段加入辅助标记,以对完整和缺失模态路径之间的交互进行建模。最重要的是,我们包括特征一致性损失,以减少网络预测中的域差距并提高缺失模态路径的预测可靠性。在 BraTS 2018 数据集上进行的大量实验证明了我们的方法与竞争方法相比的优势。实现代码可在 GitHub 上公开获取。关键词:Transformer、缺失模态、分割、MRI、医学。
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
世界正在进行能源转型,以减少二氧化碳排放和减缓气候变化 [1]。正在进行的最重要的行动是加强可再生能源的作用、提高能源效率、实现运输和供暖部门的电气化以及能源储存 [2、3]。氢经济是一种重要的可持续替代方案,将有助于实现运输、供暖部门和能源储存的脱碳 [4]。新冠疫情和乌克兰战争进一步增加了欧洲和西方国家投资氢经济作为化石燃料替代品的兴趣 [5]。氢气显著降低了地缘政治风险,因为它极大地增加了未来能源供应商的多样性 [6]。氢气是一种特别有趣的天然气替代品,因为它也是一种灵活的电力来源,并且可以使用现有的天然气基础设施 [7]。氢气的体积能量密度低,液化后可实现长距离运输。氢气液化会消耗大量能源。现有的氢气液化厂每生产一千克氢气约需 13 千瓦时电力,这约占氢气储存能量的 30% [8]。氢气液化的理论最小能耗(1 bar 时 298 K e 20 K)为每千克氢气 3.7 千瓦时电力,相当于氢气储存能量的 9.3% [8]。正在开发的新工艺可以通过磁制冷将能耗降低到每千克氢气 6 千瓦时电力,效率达到卡诺循环的 50% [9]。用于氢气液化的磁制冷系统的一种可能配置是主动磁再生器 (AMR) 系统。在该系统中,磁性材料通常是一层填充的颗粒床,它们通过一系列磁场循环以提供冷却效果。 AMR 系统已被证明具有很高的冷却能力和效率,使其成为一种很有前途的 H 2 液化技术[10]。显著提高液化效率的另一个方面是规模效应。例如,氢气液化量从每天 100 吨增加到 1000 吨,可将液化成本从 2 美元/千克 H 2 降低到 1 美元/千克 H 2 [8]。液态空气已被提议用于不同目的的冷能回收[11]。例如,使用液态空气储能 (LAES) 来储存电能,即将热能储存在液态空气中,然后用于发电[12]。液态空气已被提议用于液化天然气 (LNG) 工艺的冷能回收,类似于本文提出的方案[13]。使用
结果:我们通过检查不同脊椎动物基因组中的保守区域并与可靠注释的人类特异性固定缺失重叠,确定了 10,032 个 hCONDEL。我们发现这些 hCONDEL 富含删除源自干羊膜动物的保守序列。与转录、表观基因组和表型数据集的重叠都暗示了神经元和认知功能的影响。我们使用 MPRA 在六种不同的人类细胞类型中表征了这些 hCONDEL,包括诱导多能干细胞衍生的神经祖细胞。我们发现 800 个 hCONDEL 显示出物种特异性的调节效应。虽然许多 hCONDEL 会扰乱活性增强子中的转录因子结合位点,但我们估计 30% 会创建或改善结合位点,包括激活剂和抑制剂。
多模式磁共振成像(MRI)提供了用于脑肿瘤的亚区域分析的互补信息。已经提出了大量方法,用于使用四种常见的MRI模态自动分割自动脑肿瘤,并实现了显着的性能。在实践中,由于图像腐败,工件,获取协议,对比对比代理或仅成本,因此缺少一种或多种模式是通常的。在这项工作中,我们为脑肿瘤分割的新型两阶段框架提供了缺失的方式。在第一阶段,提出了多模式掩蔽的自动编码器(M 3 AE),其中ran dom情节(即模态辍学)和剩余模式的随机斑块都均被掩盖,以进行重新构的任务,以进行自我检查的自我检查,以对鲁棒多模态表示反对损坏的模态抗衡。为此,我们将框架命名为M 3 AE。同时,我们采用模型反转以边际额外成本优化代表性的全模式图像,该图像将用于替代缺失的模式并在推断期间提高性能。然后在第二阶段,提出了一种记忆有效的自我提炼,以在异源缺失模式情况下提炼知识,同时仔细调整模型以进行分割。我们的M 3 AE属于“全部”类型,其中一个模型可以应用于所有可能的模式子集,因此对于培训和部署都是经济的。我们的代码可在以下网址找到:https://github.com/ccarliu/m3ae。对Brats 2018和2020年数据集进行了广泛的实验,证明了其优越的性能,具有缺失模式的最新方法以及其组件的功效。