摘要 开发一种先进的人工智能光电信息系统,精确模拟光子痛觉感受器,类似人类视觉痛觉通路的激活过程,至关重要。可见光到达视网膜,供人类视觉感知,但过度照射会对附近组织造成损伤,但可见光引发痛觉感受器的报道相对较少。本文引入一种二维天然缺陷III-VI族半导体β-In 2 S 3,利用其宽光谱响应,包括本征缺陷带来的可见光,用于可见光触发的人工光子痛觉感受器。该装置在可见光激发下的响应模式与人眼非常相似。它完美地再现了人类视觉系统的痛觉特征,例如“阈值”、“放松”、“不适应”和“敏感化”。其工作原理归因于与In 2 S 3 纳米片中本征空位相关的电荷捕获机制。这项工作为宽带人工光子伤害感受器提供了一种有吸引力的材料系统(本征缺陷半导体)。
为确保飞机结构的飞行安全,有必要使用目视和无损检测 (NDI) 方法进行定期维护。在本文中,我们提出了一种使用深度神经网络 (DNN) 的基于图像的飞机缺陷自动检测方法。据我们所知,这是首次使用 DNN 进行飞机缺陷检测。我们对最先进的特征描述符进行了全面评估,并表明使用 vgg-f DNN 作为特征提取器与线性 SVM 分类器可实现最佳性能。为了减少处理时间,我们建议应用 SURF 关键点检测器来识别缺陷补丁候选。我们的实验结果表明,对于笔记本电脑上的高分辨率(20 兆像素)图像,我们可以在大约 15 秒的处理时间内实现超过 96% 的准确率。
关键字:制造产量,MMIC,MIM电容器,压力,摘要这项工作的目的是观察和分析MIM电容器结构中的应变相关效应,从而导致制造产量的降解。我们的结果表明,形成MIM结构的层之间的应变差会导致SIN X绝缘子层中应力诱导的缺陷。可以观察到这些缺陷,当MIM结构的面积 /电容增加时,它们成为一个显着的屈服限制。根据我们的技术,我们提出了一些过程和设计修改,以解决与压力相关的问题。测试了每种方法,并提出了产生的产量。ntroduction 用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。 在高效放大器的现代设计中,MIM结构的数量和大小增加。 另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。 因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。 我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。 此类缺陷是最明显的,并且相对容易通过光学检查检测。 可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图 [1]的5个)。用于金属构造仪(MIM)电容器的单片微波集成电路(MMIC)模具。在高效放大器的现代设计中,MIM结构的数量和大小增加。另一方面,据报道,集成的MIM电容器是导致2009年至2016年期间客户回报的失败机制的10个主要原因之一[1]。因此,所有元素的累积产量,尤其是MIM电容器,应保持最高水平,以维持可靠的技术和低成本。我们以前研究了电容器底部电极对MIM电容器产量的粗糙度的影响[2]。此类缺陷是最明显的,并且相对容易通过光学检查检测。可以使用适当的金属化技术和高级MIM层结构来减轻它们(例如,见图[1]的5个)。从我们的优化工作中,降低MIM电容器产量的原因如下:用于MIM结构的介电(SIN X)的材料特性和质量,底部电极的表面质量,由于夹层MIM结构而导致的热和/或机械应力相关问题。在这项工作中,我们提出了基于SIN X的MIMS的设计修改,以减少与热 /机械应力引起的绝缘体菌株相关的电容器故障。
致癌病毒是可导致肿瘤的病毒。目前有七种病毒被确认为人类致癌病毒:爱泼斯坦-巴尔病毒 (EBV)、卡波西肉瘤相关疱疹病毒 (KSHV,也称为 HHV8)、人乳头瘤病毒 (HPV)、乙型肝炎病毒 (HBV)、丙型肝炎病毒 (HCV)、人类 T 淋巴细胞病毒-1 (HTLV-1) 和默克尔细胞多瘤病毒 (MCPyV)。感染这些致癌病毒导致的临床表型范围从无症状感染到侵袭性癌症。患有先天性免疫缺陷 (IEI) 的患者容易患上由窄谱或广谱病原体引起的传染病,在某些情况下包括致癌病毒。对 IEI 患者的研究加深了我们对控制 EBV、HHV8 和 HPV 感染的非冗余机制的理解。导致易患致癌 HBV、HCV、HTLV-1 和 MCPyV 表现的人类遗传因素仍不清楚。我们在此简要回顾目前已知的 IEI 导致易患严重感染致癌病毒的情况。
荷兰癌症研究所 Oncode 研究所分子病理学部1066CX 阿姆斯特丹,荷兰 2 荷兰癌症研究所 Oncode 研究所分子致癌作用分部,1066CX 阿姆斯特丹,荷兰 3 延世大学医学院江南 Severance 医院生物医学系统信息学系,首尔 03722,韩国 4 肿瘤蛋白质组学实验室,阿姆斯特丹 UMC 医学肿瘤学系,1081HV 阿姆斯特丹,荷兰 5 荷兰癌症研究所 Oncode 研究所细胞生物学分部,1066CX 阿姆斯特丹,荷兰 6 伯尔尼大学生物医学研究中心癌症治疗耐药性集群和伯尔尼精准医学中心,3088 伯尔尼,瑞士 7 伯尔尼大学 Vetsuisse 学院动物病理学研究所,3012 伯尔尼,瑞士 8 荷兰癌症研究所临床前干预部小鼠癌症和衰老诊所,1066CX 阿姆斯特丹,荷兰 9 这些作者贡献相同l.wessels@nki.nl (LFAW)、sven.rottenberg@vetsuisse.unibe.ch (SR)、j.jonkers@nki.nl (JJ) https://doi.org/10.1016/j.celrep.2023.112538
几十年来,农杆菌介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的 T-DNA 从细菌转移到植物细胞中,在那里它通过聚合酶θ (Pol h ) 介导的末端连接 (TMEJ) 随机整合到基因组中。通过同源重组 (HR) 将 T-DNA 靶向到特定基因组位点也是可能的,但此类基因靶向 (GT) 事件发生的频率很低,并且几乎总是伴随着随机整合事件。另一个复杂因素是,T-DNA 和目标位点重组的产物可能不仅映射到目标位点 (真正的 GT),还可能映射到基因组中的随机位置 (异位 GT)。在本研究中,我们通过使用突变了 TEBICHI 基因(该基因编码 Pol h )的拟南芥,研究了 TMEJ 功能如何影响植物中 GT 的生物学。在 TMEJ 功能强大的植物中,我们主要发现 GT 事件伴随着随机的 T-DNA 整合,而在 teb 突变体背景下获得的 GT 事件缺乏额外的 T-DNA 拷贝,证实了 Pol h 在 T-DNA 整合中的重要作用。Pol h 缺乏也会阻止异位 GT 事件,这表明导致此结果的事件序列需要 TMEJ。我们的研究结果提供了可用于制定在农作物中获得高质量 GT 事件的策略的见解。
图 2. 示意图,说明评估长程屏蔽能量对带电缺陷的 DFT 超胞计算的贡献。 (a) 带电荷 q 的体缺陷具有无限延伸的电介质屏蔽,内接正方形表示计算超胞的范围。 (b) DFT 超胞将整个净电荷 q 限制在超胞平行六面体内,通过从超胞边缘抽取电子来屏蔽近缺陷区域,从而对边缘区域进行去屏蔽。 (c) 等效体积球体,半径为 R vol ,需要围绕该球体评估长程屏蔽能量。 (d) 该半径减少了 R skin 以解释未屏蔽的晶胞体积,从而得到了由 R Jost 定义的 Jost 经典电介质屏蔽。
稳健性图像质量不仅取决于光照情况,还取决于视角。污染会对图像质量产生负面影响,如果是金属表面,反射也会对图像质量产生负面影响。此外,不同图像之间检查部件的位置和方向可能会有所不同。理想情况下,客户需要一个解决方案,该解决方案只需要一次训练运行,并且可以在多台机器上使用,或者至少覆盖给定生产线或流程中的多个视角。因此,网络还必须能够抵御背景变化以及相机位置的变化。随着时间的推移,我们开发出了一种解决方案,即使图像数据出现几何扭曲,也能取得良好的效果,并且能够处理检查部件的方向和相机视角的变化。
1。Juho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.comJuho Lee Korea University,Seongbuk-Gu,首尔,韩国队长,韩国空军,学生会成员,Juho.lee927@gmail.com
D80 Immunodeficiency with predominantly antibody defects D80.0* Hereditary hypogammaglobulinemia Autosomal recessive agammaglobulinemia (Swiss type) X-linked agammaglobulinemia [Bruton] (with growth hormone deficiency) D80.1 Nonfamilial hypogammaglobulinemia Agammaglobulinemia含有免疫球蛋白的B-淋巴细胞常见可变的agammagaglobulinemia [cvagamma] hardogammagagamaglobulinemia nos d80.2*免疫球蛋白A [IgA] D80.3*的选择性缺陷d80.3*选择性缺陷型免疫缺陷效率。免疫球蛋白M [IgM] D80.5*免疫缺陷率提高免疫球蛋白M [IgM] D80.6*抗体缺乏效率近期免疫球蛋白或与临时抗肿瘤的临时抗肿瘤d880.8其他免疫原性D880.8缺陷Kappa轻链缺乏D80.9免疫缺陷,主要是抗体缺陷,未指定的