R/N/D 章节/节/小节/标题 R F600/483.12/虐待类型、潜在性虐待指标 R F609/ 初步报告、跟进调查报告 R F622/483.15/以不付款为出院依据 R F626/不允许居民返回、综合独立部分 R F679/ 指导 R F689/ 其他可能有用的资源 R F690/导尿/注意事项、大便失禁的原因和治疗、资源 R F697/ 使用阿片类药物进行疼痛管理、评估、监测、重新评估和护理计划修订 R F699/ 定义、指导、评估 R F700/适当的替代方案、其他可能有用的资源 R F740/ 调查与行为健康服务相关的问题、严重程度 1、潜在标签进行额外调查 R F741/定义,严重程度 1 R F742/严重程度 1 R F743/严重程度 1 R F744/调查与痴呆症护理治疗和服务相关的问题,严重程度 1 R F755/缺陷分类
9.3 SUPSHIP 职责 9-8 9.3.1 CAQAP 职责 9-9 9.3.1.1 规划 9-9 9.3.1.1.1 监督计划 9-10 9.3.1.2 文件审查 9-11 9.3.1.2.1 程序审查(PR)标准 9-11 9.3.1.2.2 技术数据审查标准 9-12 9.3.1.2.3 文件 9-12 9.3.1.3 监督 9-12 9.3.1.3.1 程序评估(PE) 9-13 9.3.1.3.1.1 初步评估 9-13 9.3.1.3.1.2 持续评估 9-13 9.3.1.3.2 产品验证检验(PVI) 9-13 9.3.1.3.3 监督前提条件 9-13 9.3.1.3.3.1 并发验证 9-14 9.3.1.3.3.2 SUPSHIP 作为第三方检验员 9-14 9.3.1.3.4 文件记录 9-14 9.3.1.4 质量审核 9-15 9.3.1.4.1 质量审核程序 9-15 9.3.1.4.2 内部质量审核 9-15 9.3.1.4.3 外部质量审核 9-16 9.3.1.4.4 承包商质量计划审核 (QPA) 9-16 9.3.1.4.4.1 QPA 程序 9-17 9.3.1.4.5 审核文件记录要求 9-18 9.3.1.5 纠正措施 9-18 9.3.1.5.1 纠正措施请求 (CAR) 9-18 9.3.1.5.2 缺陷分类 9-19 9.3.1.5.2.1 轻微缺陷 9-19 9.3.1.5.2.2 重大缺陷 9-19 9.3.1.5.2.3 严重缺陷 9-19 9.3.1.5.3 CAR 的类型和用途 9-19
摘要 - 关键基础设施的故障分析和预防对于确保运行可靠性和安全性至关重要。该概念模型探索了先进的无损检测 (NDT) 方法在关键基础设施系统中检测、分析和缓解故障的集成。无损检测技术(例如超声波检测、射线照相术、热成像和声发射分析)可实时洞察结构完整性而不会造成损坏。这些技术能够及早发现裂纹、腐蚀和材料疲劳等缺陷,这些缺陷通常是灾难性故障的前兆。所提出的模型概述了一种将预测分析与无损检测相结合的系统方法,以增强基础设施监控和维护策略。关键组件包括数据采集、预处理、使用机器学习算法进行缺陷分类以及实时决策。结合先进的数据融合技术,整合多种无损检测方法的见解,从而提高缺陷检测的准确性和可靠性。此外,该模型利用数字孪生技术来模拟和预测故障场景,从而实现主动维护和优化资源分配。该模型还强调了结合支持物联网的传感器和基于云的平台进行远程监控和利益相关者之间的实时数据共享的重要性。解决数据安全、可扩展性和测试协议标准化等挑战,以确保在交通、能源和
摘要:本文旨在设计一个用于智能电网和可再生能源的教育测试台,该台具有微电网中使用的多种功能和技术。该测试台专为学生、实验室工程师和研究人员设计,可用于研究电力微电网系统并测试新的先进控制算法以优化能源效率。这项工作背后的想法是设计混合能源,例如风能、太阳能光伏发电、水力发电、氢能,以及不同类型的储能系统,例如电池、抽水蓄能和飞轮,以整合不同的电力负载。用户可以通过使用 OPC 统一架构协议进行交互和通信的开源软件可视化每个模拟场景的组件状态。研究人员可以使用软件中集成的机器学习和优化算法(可修改和改进的块形式)来测试和验证管理电网能源行为的新解决方案,然后模拟结果。提供了一个基于模型的工程系统,该系统描述了所设计测试台的不同要求和案例研究,尊重开源软件和节约创新的特点,其中使用低成本硬件和开源软件。用户有机会添加新源和新负载、更改软件平台以及与其他模拟器和设备通信。学生可以了解智能电网的不同功能,例如缺陷分类、能源预测、能源优化以及生产、传输和消费的基础知识。
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – J.L.Arnaud 2 – J.A.Quiroga 3 1 无损检测专家,2 空中客车法国,3 马德里大学 摘要:在飞机制造/组装过程中,或交付后使用中,机身外侧可能会出现表面损伤。与飞机尺寸相比,大多数缺陷都很小,通常分布在机身的整个表面上。为了正确表征此类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于这种缺陷,光学技术通常能提供良好的解决方案。然后,开发了基于光学的新技术,以满足飞机制造商在损伤表征方面的要求。特别是,开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员进行缺陷分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际当局都要求制造商、航空公司和维护组织严格遵守有关飞机安全和保障的现行法规。飞机结构在服役期间承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期控制部件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外控制以确保其完整性以便继续使用。复杂性的增加以及用于增强机械性能和减轻结构重量的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效、更快、更准确、更自动化,并且在人为解释方面更具限制性。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度方面损坏的严重性。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或脱粘。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制器必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械性能,当凹痕几何形状足够关键以运行此类程序时。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是为了补充目前使用的机械手段(深度计、粗糙度计……)。对该工具的基本要求是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面或平台或发动机舱进行测量。此后,他们应该能够在难以接近的区域携带该工具。考虑到飞机的整个表面,与相对较小的凹痕尺寸相比,凹痕可能很多并且遍布整个飞机,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具应足够准确。
图18。(a)化学计量对Ag a bi a bi b i a+3b化合物的结构的影响,(b)BII 3,(c)AGBII 4(缺陷型旋转结构)和(d)AGBII 4(CDCL 2-type结构)的碘化物亚晶格。化合物中化合物的晶体结构。经过国际材料评论的许可,69(1),(2024)。[139]版权所有©2024,Sage Publications。................................................................................................ 50 Figure 19. a) Device layout of AgBiI 4 PV cell and b) schematic of cell preparation needed before electrode deposition with grey area being untouched thin film layers and white area being area to be scratched off c) mask for gold electrode deposition (white area is area of deposition) ...........................................................................................................................................................................................雏菊1.0的工作流程。这些图像是预处理的,用于图像分析,然后使用Harris Kepoint检测到用于识别图像中缺陷的存在的模型将缺陷分类为缺陷。....................... 68 Figure 21.雏菊2.0工作流程。给出了雏菊1.0标记为“无缺陷”的图像被赋予谷物面膜以计算平均晶粒尺寸。标记为“缺陷”的图像被赋予缺陷面罩,以计算缺陷覆盖范围百分比和谷物面罩。在XRD模式A)CS 3 Bi 2 Br 3 I 6 B)CS 3 Bisbbr 3 I 6和C)CS 3 SB 2 BR 3 I 6,使用PAWLEY方法拟合。The residuals and agreement indices are shown ........................................................................................................ 76 Figure 23.XRD模式。显示了残差和协议指数。............................... 77 Figure 24.XRD拟合A)CS 3 BI 2 I 9 B)CS 3 BI 2 BR 9 C)CS 3 SB 2 I 9和D)CS 3 SB 2 BR 9反对2D。0D, 2D and 0D reference patterns respectively add goodness of fit ............................................................................................................ 78 Figure 25.a)cs 3 bi 2 i 9沿投影载体[006],b)cs 3 bi 2 br 9沿投影矢量[201],c)cs 3 sb 2 i 9沿投影矢量[004]和d)cs 3 sb 2 cs 3 sb 2 br 9沿投影矢量[003]a)cs 3 bi 2 I 9,b)cs 3 bi 2 br 9,c)cs 3 sb 2 i 9和d)cs 3 sb 2 br 9 ...................................................................................... 80图27。(a)CS 3 B 2 x 9系列的吸光度光谱从UV VIS和PS数据编辑,以及(b)Tauc图....... 82图28。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300K pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。 在 agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱,从0-40ns以5NS间隔从0-40NS开始。在agbii 4的XRD拟合,用于a)r3̅MH参考和b)fd3̅m参考。pl衰变光谱在a)5.5k,b)40k,c)150k和d)300k pl衰变光谱,从0-40ns以5NS间隔为0-40NS。 在 pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。 ..................................................................................................................................... 86 Figure 31. CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖 PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33. TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34. ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。 ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。pl衰变光谱,从0-40ns以5NS间隔为0-40NS。在pl衰变动力学在不同温度的a)cs 3 bi 2 i 9,b)cs 3 sb 2 i 9和cs 3 bi 2 i 9和cs 3 sb 2 i 9的cs 3 sb 2 i 9和c)合并为比较。..................................................................................................................................... 86 Figure 31.CS 3 Bi 2 I 9(顶部)和CS 3 SB 2 I 9(底部)的PL的依赖性依赖PL peak wavelength vs temperature of a) Cs 3 Bi 2 I 9 and b) Cs 3 Sb 2 I 9 and the FWHM vs temperature plot of c) Cs 3 Bi 2 I 9 and d) Cs 3 Sb 2 I 9 .................................................................................................................................. 87 Figure 33.TA Spectra of a)b) Cs 3 Bi 2 I 9 , c)d) Cs 3 Sb 2 I 9 and e)f) Cs 3 Bi 2 Br 9 taken with 350 nm pump wavelength and 100 μW fluence .................................................................................................................................................... 88 Figure 34.ta动力学比较a)cs 3 bi 2 i 9,b)cs 3 bi 2 i 9,c)cs 3 sb 2 i 9,d)cs 3 sb 2 i 9和e)cs 3 sb 2 i 9和e)cs 3 bi 2 br 9 bi 2 br 9 ........................................... 35。....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 94图36。sem agbii 4 a)在合成的当天未涂层,b)合成后23天未涂层,c)在合成当天与螺旋罗涂有螺旋罗,而d)d)在合成后23天与spiro涂层。.................................................................................................................................................................................................................................................................................................................................................................................................XRD of a) uncoated AgBiI 4 left in ambient air b) AgBiI 4 coated with spiro-OMeTAD left in ambient air .............................................................................................................................................................................. 95 Figure 38.. SEM images of AgBiI 4 synthesized with hot-casting method at a) 100 ᵒC b)110ᵒC,c)120ᵒC,d)130ᵒC,e)140ᵒC和f)150ᵒC。The temperatures specified are the set temperature of the hotpate for both the substrate and precursor solution prior to spin coating ........................................................................................ 97 Figure 39.用热铸造方法合成的Agbii 4的SEM图像,标记的温度是旋转涂层之前的底物和前体溶液的热板的温度。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。agbii 4的SEM图像在110°C时以22s的抗可溶性滴注在110°C时合成。a)未使用反溶剂,b)氯苯,c)IPA,d)甲苯........................................................................................................................................................................................................................................................................................................................................... 99图41.sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100sem的Agbii 4的图像,在110°C下合成了DMSO与DMF的比例为A)1:1 B)1:1 B)1 B)1 B)1 B)1 B)1 B)1 B)1:1 22S C)3:1 d)3:1 D)3:1 D)3:1 D)在22s e)5:1 f)5:1 f)5:1 f)10:1 f)10:1 f)at 22:1 f)at 22:1 g) chlorobenzene dripping at 22s i) pure DMSO and j) pure DMSO with chlorobenzene dripping at 22s ........................................................................................................ 100