本研究通过 CV 和 IV 分析研究了新型 MIS 结构 TiN/Al 2 O 3 /P-Si 的电性能,采用 Silvaco TCAD 软件进行模拟。检查各种参数,包括频率、温度、氧化物厚度、表面条件和掺杂水平,揭示了它们对器件特性的影响。模拟结果与理论预期非常吻合,验证了模拟方法的有效性。发现温度变化会影响平带电压,可能是由于氧化物电荷密度和界面缺陷密度的变化,而在 77 K 至 300 K 的温度范围内观察到弱反转区。频率依赖性很明显,特别是在 1 GHz 时,对 CV 行为有显著影响。IV 分析揭示了不对称的温度激活,表明存在双传导机制。此外,更高的掺杂水平与负电压范围内的电流密度增加相关。对具有不同介电厚度的电容器的模拟漏电流表明行为不均匀,由于能带图不对称,从栅极注入电子导致与基板相比更高的电流密度。这强调了降低氧化物厚度对漏电流行为的影响。
电载体及其高热分率[8]和机械功能使石墨烯高度用途。结合钻石和石墨烯的显着性在于具有最好的两者的可能性:钻石的绝缘和热散热性能以及墨料的出色电气特性。钻石表现出165 MeV的高光音子能量。[9]此属性对于钻石上的石墨烯设备可能至关重要,因为石墨烯层中的载流子迁移率通常受到源自底物的光学声子散射的限制。高光学声子能量意味着在RT处很少有光学声子,导致低散射速率。与常规的SIO 2 /Si和SIC相比,DIAMOND作为底物的其他好处包括其具有较低陷阱密度的化学惰性表面。作为钻石上石墨烯设备的底物,由于其可伸缩性可能性和较低的缺陷密度,化学蒸气沉积(CVD)钻石优于高压高温(HPHT)。[10]石墨烯和钻石的非凡特性引起了人们对将这些材料集成到电子和量子应用中的兴趣。[11]
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。
带有INGAN多个量子井(MQW)的基于GAN的太阳能电池是在空间环境,集中器太阳系,无线电源传输和多连接太阳能电池中应用的有前途的设备。因此,在提交高温和高强度应力时,了解其降解动力学很重要。我们将三个带有P-Algan电子阻滞层的Gan-ingan MQW太阳能电池的样品在310 W/cm 2,175°C下以不同的p-gan层厚度为恒定的功率应力,持续数百小时。主要退化模式是降低开路电压,短路电流,外部量子效率,功率转换效率和电发光。,我们观察到,较薄的p-gan层会导致在细胞工作参数上观察到的更强的降解。对黑暗I-V特征的分析显示,低前向偏置电流的增加,电致发光的分析显示,由于压力,由(正向偏置)细胞发出的电闪光下降。这项工作强调,降解的原因可能与扩散机制有关,这导致活性区域的缺陷密度增加。扩散过程中涉及的杂质可能起源于设备的P侧,因此,较厚的p-gan层减少了到达活性区域的缺陷量。
摘要:磷化铟 (InP) 量子点使不含重金属、发射线宽窄且物理上可弯曲的发光二极管 (LED) 成为可能。然而,高性能红色 InP/ZnSe/ZnS LED 中的电子传输层 (ETL) ZnO/ZnMgO 存在高缺陷密度,沉积在 InP 上时会猝灭发光,并且由于陷阱从 ETL 迁移到 InP 发光层而导致性能下降。我们推测,ZnS 外壳上 Zn 2+ 陷阱的形成,加上 ZnO/ZnMgO 和 InP 之间的硫和氧空位迁移,可能是造成这一问题的原因。因此,我们合成了一种双功能 ETL(CNT2T,3 ′,3 ′″,3 ′″″-(1,3,5-三嗪-2,4,6-三基)三(([1,1 ′-联苯]-3-腈)),旨在局部和原位钝化 Zn 2+ 陷阱并防止层间空位迁移:小分子 ETL 的主链包含三嗪吸电子单元以确保足够的电子迁移率(6 × 10 − 4 cm 2 V − 1 s − 1),具有多个氰基的星形结构可有效钝化 ZnS 表面。我们报告的红色 InP LED 具有 15% 的 EQE 和超过 12,000 cd m − 2 的亮度;这代表了基于有机 ETL 的红色 InP LED 中的记录。■ 简介
摘要。石墨烯具有探索奇异的超导性的承诺。使石墨烯在大尺度上成为超导体是一个持久的挑战。可能使用超导底物依靠外延生长的石墨烯。这样的基材很少,通常会破坏电子带结构的狄拉克特征。Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene via a remote proximity effect, from rhenium底物通过插入的金层。弱的石墨烯-AU相互作用与强烈不希望的石墨烯 - RE相互作用形成鲜明对比,通过减少的石墨烯波纹,石墨烯和基础金属之间的距离增加,线性电子分散体和特征性振动签名,这证明了后者的两种特征,也揭示了略微的plate特征。我们还揭示了接近性超导性的插入方法的主要缺点是在石墨烯中产生高点缺陷密度(10 14 cm -2)。最后,我们在低温下展示了石墨烯/AU/RE(0001)中远程接近性超导性。
- 威布尔形状参数 TCR - 电阻温度系数 C - 电容值 THS - 热点温度 CR - 循环速率 V - 电压 D - 缺陷密度 VA - 施加的最大电压 D056 - 空军维护数据库 VR - 额定电压 DIP - 双列直插式封装 X - 电介质厚度 DPDT - 双刀双掷 AT - 温度变化 Ea - 阿伦尼乌斯关系中使用的激活能 EMP - 电磁脉冲 ESD - 静电放电 F - 故障 FLHP - 全马力 FSN - 联邦库存编号 I 电流 IC - 集成电路 IPB - 图解零件故障 K - 玻尔兹曼常数 L - 电感 S - 故障率 LC - 生命周期 MCTF - 平均故障周期数 MLB - 多层板 MTTF - 平均故障时间 NOC - 未分类 P - 电源 PC - 印刷电路 PCB - 印刷电路板 PGA - 引脚栅格阵列 PPM - 百万分率 PWB -印刷线路板 0 - 热阻 QPL - 合格产品列表 R - 电阻(单位:欧姆) RF - 射频 RIW - 可靠性改进保证 S - 应力比 SIP - 单列直插式封装 SMC - 表面贴装元件 SMT - 表面贴装技术 SPC - 统计过程控制 SPST - 单刀单掷 SR 串联电阻 SSR 固态继电器 T - 温度 TA - 环境温度
在开发新的设备和功能时,在不同结构和键合的材料之间形成了良好的控制界面。特别重要的是二维材料和三维半导体或金属之间的外延或低缺陷密度接口,其中界面结构在场效果中影响电导率以及光电设备的电导率,纺丝和典型的超元诱导的纤维传递。外延,因此已经证明了范德华键入底物上的几种金属的界面结构。在这种底物上的半导体外延很难控制,例如在石墨烯上Si和GE的化学蒸气沉积过程中。在这里,我们展示了一种催化介导的het-伴随的方法,以实现三维半导体的外延生长,例如van der waals键入的材料,例如石墨烯和六边形硼硝基。外在通过固体金属纳米晶体从底物“转移”到半导体纳米晶体,很容易在底物上排列并催化半导体的对准核的形成。原位透射电子显微镜使我们能够阐明此过程的反应途径,并表明固体金属纳米晶体可以在温度明显低的温度下催化半导体的生长,而不是直接化学蒸气沉积或由液体催化剂液滴介导的沉积。我们将GE和SI增长作为模型系统讨论,以探讨这种异互隔开的细节及其对更广泛材料的适用性。