如果用户打算使用该设备指示罐内液体的体积/质量,建议首次校准是进行完整的“湿校准”,以在规定条件下建立罐内液位与该液体体积/质量之间的关系。典型程序包括根据校准表将雷达液位测量装置的读数与体积/质量指示进行比较。该表是为具有规定几何形状的固定储罐或反应器以及精确计量的参考液体体积/质量而建立的,例如在规定条件下使用参考校准流量计确定。上述所有测量(例如计量介质的数量、罐体几何形状、环境和工艺条件)都会影响整体测量不确定度。
1.1 目前市面上有些气雾剂产品(例如空气清新剂、缓蚀剂、除臭剂、杀虫剂、润滑剂、泡沫定型剂及雪雾剂等)含有石油气与其他化学品的混合物。石油气经加压后变成液态,然后储存于气雾罐内作为喷射剂使用。市民在保管及使用这些气雾剂产品时,应注意气体安全。 1.2 本指引为在本港出售的载有石油气的气雾罐(下称“气雾罐”)的安全标准提供指引。本指引不适用于以非石油气气体作为喷射剂的气雾罐,例如压缩二氧化碳、二甲醚等。 1.3 本指引并不包括有关气雾罐内除石油气以外的其他内容物的安全规定。供应商必须确保遵守所有其他相关安全标准及其他本地法定要求。1.4 本指引亦可在 www.emsd.gov.hk 查阅。
1991 年 5 月 28 日至 29 日,位于北卡罗来纳州威尔明顿附近的通用电气核燃料和部件制造厂,约 150 公斤的铀被无意中从安全工艺罐转移到位于废物处理设施的不安全罐中,从而有可能造成局部临界安全问题。当对罐内物质进行离心以去除含铀物质时,多余的铀最终被安全回收。随后,美国核监管机构
Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
5. 电的危险包括电灼伤、触电、触电死亡、火灾,在极端情况下甚至爆炸。形成电流通路的人将遭受电击或烧伤。其严重程度取决于电的性质、接触时间、电流量以及电流通过人体的路径。如果人与地有良好的电接触,则更容易受到电击。在潮湿环境或导电场所(如金属罐内)用电时应考虑到这一点。1“电气系统”是指连接到电源时电流可以流过的设备布置,包括带插座的设备以及直接接入电源的设备。
受控的煮沸管理是一个关键挑战。船上的低温坦克需要在飞机不运行的情况下最大程度地减少沸腾的时间。在飞行的所有阶段中,提取的氢气需要应对由燃料电池系统本身和周围环境引起的热流引起的储罐内的沸腾。如果无法实现这一目标,则存储系统将需要主动冷却系统或增强的绝缘材料,均增加重量。最关键的时期将是在飞行前后的地面上持有时间,这些时间可以确定存储系统的设计要求。
德国斯图加特 Sergej.Belik@dlr.de 摘要:电加热再生器储存是一种节能且经济的解决方案,可用于转换多余的电能并将其储存为高温热能。我们引入了一个瞬态模型来描述这种混合存储系统的热力学行为,该模型具有最少的无量纲参数。这些特征参数用于得出再生器储存中电热集成热力学评估的关键性能指标。从模拟研究中获得的结果表明电加热元件在储罐内的位置是节能的,并为设计提供了显着改进的热存储容量和性能。电热扩展带来的这些好处在提高成本效率和操作灵活性方面尤为明显。