执行摘要拖把录像日期为20.03.2023的要求CEA制定电池电池电池电网(EV)的电网的指南。 因此,委员会是根据成员(GO&D)主席(CEA)构成的,日期为11.04.2023。 委员会在10.05.2023举行的第1次会议上要求分析电动汽车反向收费的各个方面,并将其呈现给委员会。 因此,小组委员会的会议于17.07.2023与来自IIT Bombay,IIT Delhi,IIT Roorkee,IIT Roorkee,BSES Rajdhani Power Limited(BRPL),EVSE和EVS OEM的参与者举行,以准备该报告,以准备该报告,以供汽车对网格(V2G)服务。 本报告简要概述了电动汽车可以通过智能充电,关键挑战和重要因素为电力系统提供的服务,以实现部署,实施要求和前进的方向,以使电动汽车在网格中平稳整合。 本报告着眼于双向V2G技术,并在整合更高的可再生能源方面的作用,同时为电网提供服务。 因此,本报告的主要目的是在分发网格的规划和操作中与EV充电基础架构的整合,即 可再生发电的成本降低使电力成为运输部门有吸引力的低成本燃料。 在电动汽车部署(EV)部署中的大量扩展也代表了电力部门的机会。 以来,包括电动汽车在内的汽车通常将其终生停放的80-90%。 因此,电动汽车舰队可以创造大量的电力存储能力。要求CEA制定电池电池电池电网(EV)的电网的指南。因此,委员会是根据成员(GO&D)主席(CEA)构成的,日期为11.04.2023。委员会在10.05.2023举行的第1次会议上要求分析电动汽车反向收费的各个方面,并将其呈现给委员会。因此,小组委员会的会议于17.07.2023与来自IIT Bombay,IIT Delhi,IIT Roorkee,IIT Roorkee,BSES Rajdhani Power Limited(BRPL),EVSE和EVS OEM的参与者举行,以准备该报告,以准备该报告,以供汽车对网格(V2G)服务。本报告简要概述了电动汽车可以通过智能充电,关键挑战和重要因素为电力系统提供的服务,以实现部署,实施要求和前进的方向,以使电动汽车在网格中平稳整合。本报告着眼于双向V2G技术,并在整合更高的可再生能源方面的作用,同时为电网提供服务。因此,本报告的主要目的是在分发网格的规划和操作中与EV充电基础架构的整合,即可再生发电的成本降低使电力成为运输部门有吸引力的低成本燃料。在电动汽车部署(EV)部署中的大量扩展也代表了电力部门的机会。以来,包括电动汽车在内的汽车通常将其终生停放的80-90%。因此,电动汽车舰队可以创造大量的电力存储能力。智能充电;电动汽车的电网支持服务,以促进大规模可再生能源整合;电动汽车充电基础设施与分销网格集成的技术和标准;电动汽车充电基础设施和与分布网格集成的政策和法规;确定印度电动汽车充电基础设施的有效,有效和可持续整合的主要挑战和建议。这些闲置时期,加上电池存储容量,可能使电动汽车成为电源系统的吸引力灵活性解决方案。它们可以充当灵活的负载和分散的存储资源,能够提供额外的灵活性来支持电源系统操作。电动汽车充电基础架构及其集成的持续开发将取决于政策和监管框架,这也必须考虑网络中增加的EV负载的影响,例如分布网格中的高峰需求和拥堵等。网络拥塞,电压和电压下的电压问题,反应性电源补偿的要求,峰值负载增加,相位不平衡问题只是较高EV负载的分销公用事业可能见证的许多不同挑战中的少数。此外,安装高功率充电器可能需要升级分销基础架构。在这方面,实施智能充电是确保不受网络限制的电动汽车吸收的关键推动器。此外,通过智能充电,电动汽车可以使其充电模式适应峰值需求,填充负载谷,并通过调整充电水平来支持网格的实时平衡。智能充电将使分配实用程序能够控制电动汽车负载,从而帮助他们将充电负载转移到非高峰期,这可以帮助推迟电网升级要求。随着负载的升级,智能充电将有助于增加对电动汽车充电的可再生能源的利用。
摘要。基于网格的场景表示,提供了一个有希望的方向,可简化大规模的层次视觉定位管道,根据全局特征(检索)(检索)和基于本地特征的视觉定位步骤来组合视觉位置识别步骤。现有工作证明了网格对视觉定位的可行性,但在Visual Place识别中使用从它们中呈现的合成数据库的影响仍然很大程度上尚未探索。在这项工作中,我们研究了大规模视觉位置识别(VPR)的密集3D纹理网格。使用基于合成网格的图像数据库与现实世界图像进行检索相比,我们确定了显着的性能下降。为了解决这个问题,我们提出了一种新型的VPR管道Meshvpr,它利用轻量级的特色对齐框架来弥合现实世界和合成域之间的差距。MESHVPR利用了预训练的VPR模型,对于全市范围的部署是有效且可扩展的。我们使用可自由使用的3D网眼的新型数据集,并从柏林,巴黎和墨尔本手动收集了查询。广泛的评估表明,MESHVPR通过标准VPR管道实现竞争性能,为基于网格的本地化系统铺平了道路。数据,代码和交互式可视化可在https://meshvpr.github.io/
X射线成像是一种众所周知的技术,用于对物体的非破坏性成像和表征。基于X射线放射图,可以获得对象的形状,密度和原子数的信息。这些功能使X射线成像高度适用于非破坏性分析和测试。A key technique in non-destructive radiography-based analysis is material de- composition, whose aim is to determine the materials composition of an object.在医学成像中,可以应用材料分解以区分良性和恶性肿瘤[2]。在货物检查中,可以将材料分解构成以识别农产品中的走私商品或杂质[3]。Two main techniques for material decomposition have been described in the literature: Dual Energy Material Decomposition (DEMD) and Single Energy Material Decomposition (SEMD).DEMD利用材料衰减系数的能量依赖性。The linear attenuation coefficient as a function of the energy can be modeled as a linear combination of basis functions, such as those describing the energy dependency of the photoelectric interaction and total cross-section of the Compton scattering.另一种方法是选择依赖能量的基本材料(例如骨和水)作为基础函数[4]。[5]。此技术使衰减中的差异在常规重建中是看不见的。另一种方法是获取物体的高和低能量X光片,从而产生具有独特投影值的X光片[6]。然后,使用查找表将投影值链接到路径长度。基于此信息,可以获得材料厚度。减少暴露需要改编硬件,例如双源单元或光子计数检测器[4]。此外,由于DEMD需要进行两次扫描,因此对物体的辐射暴露可能是一个问题,尤其是在医学成像中[4]。此外,查找表的创建可能很耗时[6]或不准确[7]。单能投影(SEMD)另一方面,通过使用远程长度的知识来估算仅一次扫描的材料组成。这些路径长度可以从CT重建[6]或从3D激光扫描仪获得的对象的表面图像估算[8]。最近,显示路径长度也可以通过将对象的表面网格注册到其扫描的投影中直接从几个X射线投影中恢复[9]。此方法不需要除X射线扫描仪或完整CT扫描以外的其他硬件,它提供了将其集成到材料分解过程中的潜力。我们提出的方法估计了用X射线光扫描的物体的均匀混合物的化学质量分数。CAD-ASTRA工具箱用于计算路径长度和模拟多色X射线射线照相。
交付惯性是真正需要的是真正的惯性。8月9日的真实故事是,由于化石加油站退休,该系统的惯性通常少于该网格以来的惯性。那天,惯性很低,因为风产生很高。如果有足够的惯性,只会发生一次或两次旅行,而不是许多人的级联。Storectric的CAES解决方案提供了同等大小的电站的两倍的自然惯性,并提供24/7。关于Storelectric-Storeclectric(www.storelectric.com)正在开发传输和分配网格尺度存储,以使可再生能源能够可靠,成本效率地为电网提供动力:世界上最具成本效益,最广泛可用的大规模储能技术,转向本地生成的可再生能源,使得可造成的电力易于实现。
抽象的多级逆变器(MLIS)被明显地用于网格连接的系统,例如可再生能源系统和工业应用,因为它们有能力产生低质量输出波形,总谐波畸变低(THD)。与独立应用不同,这些逆变器运行的控制系统负责维持系统稳定性,网格合规性和效率。这项工作介绍了专门针对MLI在网格连接系统中应用的控制算法优化的全面研究。这项研究旨在提高重要的性能标准,同时确保有关主要的谐波波,功率因数和效率的网格代码合规性。专家控制器,例如SVPWM,MPC和混合技术,在逆变器性能中显示出大量的透支。模拟和实验数据表明,在网格连接条件下,提出的方法可以使MLI的性能增强受益。
网格支持的CFE是CFE,该CFE作为默认电力服务或公用事业或电动服务提供商的电力混合物的一部分交付给联邦客户。如实施说明的第4.2.4节所述,网格供应的CFE是四种CFE策略之一 - 以及购买的CFE,现场CFE和购买的能源属性证书(EACS) - 可以在供应商中逐个销售或堆叠的能源属性证书(EACS)。实施指示规定,联邦能源管理计划(FEMP)将使用Egrid来计算代理商可以作为网格支持的CFE包含的CFE剩余网格混合物2,直到基于市场数据获得更精致的计算方法(第4.2.4节)。对于许多联邦设施,已获得新的市场数据,该数据支持了一种精致且首选的方法来计算网格供应的CFE。新的“供应商证明”方法旨在根据州和地方法律或法规捕获供应商现有的网格混合物中的CFE。代理商可以使用电力供应商证明的CFE百分比,而不是FEMP计算的残留网格混合百分比,只要电力供应商