(Grant Amorce)的财务支持。†HEC LIEGE,LIEGE大学,LCII;核心(uclouvain)和cesifo。 电子邮件:agautier@uliege.be。 •Neoma商学院电子邮件:Julien.jacqmin@neoma-bs.fr。 §MRE,MUSE,MUSE和LABEX“ Entreprendre”,法国蒙彼利埃。 电子邮件:†HEC LIEGE,LIEGE大学,LCII;核心(uclouvain)和cesifo。电子邮件:agautier@uliege.be。 •Neoma商学院电子邮件:Julien.jacqmin@neoma-bs.fr。 §MRE,MUSE,MUSE和LABEX“ Entreprendre”,法国蒙彼利埃。 电子邮件:电子邮件:agautier@uliege.be。•Neoma商学院电子邮件:Julien.jacqmin@neoma-bs.fr。§MRE,MUSE,MUSE和LABEX“ Entreprendre”,法国蒙彼利埃。电子邮件:
灵活的《卫报》系列是一个“插头和播放”预装电池系统,考虑到符合AS5139安装要求和清洁能源委员会的“最佳实践指南”的牢记的太阳能安装程序。它支持一系列逆变器/充电器平台,可以为“ AC耦合”和“ DC耦合”太阳能安装配置,使其成为极其灵活的平台。
随着逆变器资源 (IBR) 在北美的普及率不断提高,电网动态和控制策略也在近年来不断调整和进步。其中一种正在获得发展势头的技术是电网形成 (GFM) 逆变器技术。GFM 逆变器已在电池储能系统 (BESS)、风力发电厂、太阳能光伏 (PV) 发电厂和混合 1 发电厂中得到广泛研究。此外,还有几个已安装的项目成功测试了 GFM 功能,包括响应频率事件在惯性时间范围内的极快速功率注入、无同步发电的孤岛运行能力、黑启动能力以及与电网跟踪 (GFL) 资源和同步机器的并行运行。对 GFM 控制及其对 BPS 性能的影响的广泛理解仍处于早期阶段;然而,该技术显示出巨大的前景。从具有高 IBR 普及率的系统条件进行的研究结果显示了 GFM 控制的好处,并且设备供应商拥有可提供 GFM 功能的商用产品。虽然 GFM 逆变器仍需要研究和调整以适应特定的系统条件(类似于 GFL 控制),但与目前几乎所有现有 IBR 中应用的 GFL 控制方案相比,它们确实具有优势。GFM IBR 有望提高 IBR 渗透水平,并可能在未来高 IBR 渗透条件下对 BPS 的稳定性和可靠性发挥重要作用。目前业界尚无普遍认可的 GFL 和 GFM 逆变器控制定义。本白皮书建议采用以下定义:
Micro Grid集成印度斋浦尔RCEW电气工程部Mana Lal。Akanksha Malhotra电气工程系,RCEW,印度斋浦尔。Vivek Kumar Chauhan电气工程系,RCEW,印度斋浦尔。Apurva Vashishtha电气工程系,印度斋浦尔RCEW。摘要混合能源系统在可靠性,可持续性和环境问题以及可再生能源技术的进步等各个方面向农村地区提供电力变得有吸引力;特别是对于居住在网格扩展很困难的地区的社区,因此生成可再生能源(例如太阳能和风能),以提高系统效率和大幅降低成本是最好的方法。除此之外,大城市对可再生能源的需求正在增加,它们与现有传统网格的融合已成为更令人着迷的挑战。因此,未来需要将可再生分布式发电机的稳定和可靠的集成到网格中,并且本地负载接近分布式生成器。本章将通过其完整的操作和控制提供完整的微网格系统概述。关键字:分布式生成(DG),微网格,网格集成和控制,可再生能量。简介传统电源网络包括具有额外高压链接的大生成站,这些发电站将传输变电站与分配系统连接起来,以向最终用户传递电源。因此,可再生能源是产生能量和热量的最可持续疗法。因此,传统电力系统的基本概念是中央控制,并具有单向能量流,用于将电源传输到负载中心。可再生能源的来源正成为不传统分配系统向客户提供电能的最重要来源,尤其是对于居住在网格扩展很困难的地区的社区,因此产生了绿色来源,例如光伏电源(PV)(PV),例如为提高系统效率和大量成本降低提供可靠的能源,以提供可靠的能源。可再生能源的主要优点是即时可用性,对化石燃料的依赖程度较小,低成本变化以及没有运输成本来提高经济效率。微电网电源系统微网格系统是单个或多个可再生能源的配置,即使是非常规来源作为主要能源产生来源,因此,来自一个来源的功率短缺将由其他可用来源替代,以提供可持续的力量。此外,它包含了能量存储和电源电路。2.1.Micro网格电源系统配置Micro Grid是根据以下技术拓扑配置的,以将可用的可再生能源融合并满足所需的负载。在这里,电压和负载需求是决定因素。因此,任何电源系统配置均以以下表单分组。
我们预计客户使用电力的方式发生了重大变化,这将对网格提出前所未有的需求。超过预期的电力需求增加了60%,到2045年,峰值负载的预期增加了40%,移动性和批量采用分布式能源(DERS)(例如太阳能和电池)将使电力需求的变化更大,但提高了客户对可靠性和弹性的期望。• More than 20 million light-duty electric vehicles (EVs) are expected by 2045 in California, with each new vehicle's peak charging being roughly the equivalent of adding a new home to the grid • For the first time since the electric grid was built, a significant amount of demand will come from devices that are not stationary, making load forecasting by location more difficult • Connecting millions of inverter-based customer devices (e.g., solar, batteries) and电网的电子设备可能会引起广泛的电源质量影响,例如电压畸变,如果不避开,则可能会缩短客户和网格设备的寿命
对电力的需求增加和化石能源的不可再生性质,使得朝着可再生能源迈进。然而,可再生能源的常见问题(即间歇性)是通过互补来源的杂交克服的。因此,每当主要来源未完全覆盖负载需求时,第二个绝对会支持它。此外,必须由网格连接的混合可再生能源系统来管理生产,与网格和存储系统的相互作用,这是本文的主要目的。的确,我们提出了一个新系统的网格连接的PV玻璃,该系统可以通过最佳管理算法来管理其能量流。我们提出的混合体系结构中的DC总线源连接拓扑解决了负载供电时源之间的同步问题。我们在这项工作中考虑,选择电池放电和电荷限制功率可扩展电池寿命。另一方面,我们根据其数学建模模拟了体系结构各个组件的动态行为。之后,提出了一种能量管理算法,并使用MATLAB/SIMULINK模拟以服务负载。结果表明,考虑到居民的电气行为以及典型的一天的天气变化,在所有情况下都付了负载。的确,通过日出和日落之间的即时太阳生产或从日落到晚上10点的恢复,可以为载荷提供负载,这可以是存储或注入的能量,而无需超过每小时1000W的能量。c⃝2019由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。