EtherCAT 支持任何拓扑,而不会影响性能,也不存在级联交换机或集线器所带来的复杂性:线型、树型和星型拓扑可以自由组合。每个网段最多可以有 65,535 个节点。一个主站可以托管多个网段。EtherCAT 主站可以使用拓扑识别功能自动检测网络变化,该功能将实际网络与主站预期的配置进行比较,并据此重新配置。因此,节点可以在运行期间连接和断开。动态适应网络识别允许在运行期间连接和断开网络段或单个节点,例如当机器人操纵器抓取并连接到特定的基于 EtherCAT 的传感器工具时。EtherCAT 从站控制器是此热连接功能的基础。EtherCAT 会自动为从站节点分配地址,因此无需手动寻址。这高度支持不断变化的机器人操纵器配置,其中机器人必须扩展其内部数据网络以包括外部抓取负载和/或传感器。地址可以保留,这样如果添加更多节点,就不需要新的寻址,因为在启动时地址会自动分配。
摘要 天空地一体化网络(SAGIN)作为新兴6G网络不可或缺的组成部分,旨在通过融合卫星网络、空中网络和地面网络,提供无处不在的网络连接和服务。在6G SAGIN中,各种网络服务具有需求多样化、移动性复杂、资源多维等特点,对服务发放带来巨大挑战,亟待开发面向服务的SAGIN。本文从面向服务网络的新视角对6G SAGIN进行全面的回顾。首先,我们提出了面向服务的网络需求,然后提出了面向服务的SAGIN管理架构。根据服务的特点和需求,提出并讨论了两类关键技术,即异构资源编排技术和云边协同技术,这些技术促进了不同网段的互操作,并协同编排不同域之间的异构资源。此外,还介绍和讨论了未来的潜在研究方向。2022 中国航空航天学会。由 Elsevier Ltd. 制作和托管。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
图 ES-2 描述了 SSPS 技术的预期发展及其与电网的集成。SSPS 1.0 预计将涉及不同变电站或“电网节点”的应用和局部影响,例如与电网边缘的工业和商业客户、住宅建筑或社区分布式发电/存储设施相关的应用。SSPS 2.0 预计将扩展 SSPS 1.0 的功能,提高转换器应用的电压水平和功率等级。此分类还集成了增强和安全的通信功能,将应用扩展到包括配电变电站的应用,例如集成先进的发电技术(例如小型模块化反应堆、灵活的热电联产)和公用事业规模的发电设施。SSPS 3.0 是最终分类,表示 SSPS 转换器可以扩展到任何电压水平和功率等级,涵盖所有可能的应用。 SSPS 3.0 的推出将使电网设计和运行方式发生根本性的范式转变,并有可能实现完全异步、自主和分形的电网段。