在数字时代,网络威胁变得越来越复杂,需要创新方法来加强安全措施。人工智能 (AI) 已成为网络安全领域的强大工具,在威胁检测、异常检测和响应自动化方面提供高级功能。本文概述了网络安全中的人工智能应用,强调了其在降低风险和加强防御机制方面的作用。机器学习、深度学习和自然语言处理等人工智能技术使安全系统能够实时分析大量数据,识别出表明恶意活动的模式。通过利用人工智能驱动的算法,网络安全平台可以在网络威胁造成重大损害之前主动检测和消除它们。此外,人工智能还可以实现事件响应过程的自动化,缩短响应时间并最大限度地减少安全漏洞的影响。来自领先网络安全公司的案例研究是研究不可或缺的一部分,展示了人工智能驱动的解决方案在保护关键基础设施免受网络威胁方面的实际实施。这项研究的重点是通过利用人工智能技术来抵御网络攻击和保护敏感数据资产。
这个专门为新闻界准备的片段将让我们通过模拟陆军格里芬号事件来深入了解网络干预的核心。此次事件将为车辆乘员、指挥系统和网络响应小组提供培训。
征文 网络安全格局不断变化,为安全专业人员带来源源不断的数据流。有价值的威胁情报隐藏在这一庞大的数据流中,包括社交媒体、技术报告和暗网论坛中报道的文本。传统上,网络威胁情报 (CTI) 依赖于手动分析或基本的关键字匹配,导致瓶颈和错失机会。安全分析师面临着数据量巨大的限制、代码混淆和社会工程等策略的复杂性,而威胁的快速发展需要实时处理才能领先于攻击者。在当今的数字环境中,数据量和复杂性不断增加,自然语言处理 (NLP) 技术和大型语言模型已成为解密和缓解网络威胁不可或缺的工具。NLP 使机器能够理解和处理人类语言,为 CTI 提供了显著的好处,例如自动处理、高级威胁检测和实时分析,从而可以立即识别和响应威胁。因此,有效地提取和分析这些信息对于主动防御策略至关重要。本次研讨会探讨了人工智能/生成式人工智能在网络安全领域(尤其是 CTI 收集和分析领域)的革命性潜力。研讨会将为研究人员、从业人员和爱好者提供一个平台,让他们更深入地探讨与 NLP、大型语言模型 (LLM) 以及更广泛意义上的网络安全和网络威胁情报背景下的人工智能技术相关的专业主题。
给定输入数据(表示为由其特征响应定义的 d 维空间中的点的集合(在此示例中为 2D),通过将整个训练集发送到树中并优化分割节点的参数来优化所选的能量函数,从而训练决策树。
网络安全是一个相对较新的领域,不像医学或工程等其他传统领域那样存在了那么久。因此,它多年来一直没有获得其他领域享有的同等水平的资源和支持。尽管如此,近几十年来重大的技术进步对网络安全专业人员的需求很高。鉴于高技能网络安全资源的稀缺,组织很难找到和维持这样的资源,并确保他们提升自己的技能以匹配对手日益先进的技术和战术。使用人工智能 (AI) 和量子计算等新兴技术意味着网络安全专业人员需要不断提升自己的能力以跟上最新威胁。
通过结合使用监督式和无监督式机器学习以及深度学习方法和高级数学,Cyber AI Analyst 可以完成大量原本需要人类完成的繁重工作。它利用 Darktrace 世界级专家多年来在威胁调查中收集的见解来做出高度准确的决策,并首次向公众提供这些丰富的知识。
AI Network 的目标是服务数百万个开源项目。因此,AI Network 旨在在最合适的运行时环境中运行不同类型的软件。如果项目涉及深度学习,则可能需要高性能 GPU;如果项目涉及传感器网络,则可能需要数百万台小型计算机。以太坊仅支持一种名为 Solidity 的语言,其运行时环境称为 EVM。AI Network 在异构类型的运行时环境上运行多种语言。我们将这些环境称为安全运行时环境,简称 SRE。AI Network 没有 Solidity 等原生智能合约语言。相反,资源提供者池中的工作人员正在监听区块链事件以参与执行。因此,区块链的职责缩小到传播实时事件和记录执行的生命周期。
