国际医学与生物系统物理学学院6-8 2020年11月8日结论:Alexnet和Googlenet体系结构的比较,以对树类型进行分类
行为源自多个在解剖学和功能上不同的大脑区域的协调活动 1,2 。现代实验工具 3–5 使我们能够前所未有地接触大量神经群,甚至是横跨全脑许多相互作用区域的神经群 2 。然而,要理解如此大规模的数据集,不仅需要稳健、可扩展的计算模型来提取区域间通信的有意义特征,还需要原则性理论来解释这些特征。在这里,我们介绍了基于电流的分解 (CURBD),这是一种使用数据约束的循环神经网络模型 6 推断全脑相互作用的方法,该模型一旦经过训练,就会自主产生与实验获得的神经数据一致的动态。CURBD 利用从这些模型推断出的功能相互作用来同时揭示多个大脑区域之间的定向电流。我们首先表明,CURBD 可以在具有已知连接和动态的模拟真实网络中准确地隔离区域间电流。然后,我们将 CURBD 应用于从广泛的神经数据集(斑马鱼幼虫 7 、小鼠 8 、猕猴 9 和人类 10 )获得的多区域神经记录,以证明 CURBD 在解开全脑相互作用和行为背后的区域间通信原理方面的广泛适用性。
ErbB 受体家族(包括 EGFR 和 HER2)在细胞生长和存活中起着至关重要的作用,并与乳腺癌和肺癌等各种癌症的进展有关。在本研究中,我们开发了一个深度学习模型,使用基于 SMILES 表示的分子指纹来预测 ErbB 抑制剂的结合亲和力。每种 ErbB 抑制剂的 SMILES 表示均来自 ChEMBL 数据库。我们首先从 SMILES 字符串生成 Morgan 指纹,并应用 AutoDock Vina 对接来计算结合亲和力值。根据结合亲和力过滤数据集后,我们训练了一个深度神经网络 (DNN) 模型来根据分子指纹预测结合亲和力值。该模型取得了显著的性能,训练集上的均方误差 (MSE) 为 0.2591,平均绝对误差 (MAE) 为 0.3658,R 平方 (R²) 值为 0.9389。尽管在测试集上性能略有下降(R² = 0.7731),但该模型仍然表现出强大的泛化能力。这些结果表明深度学习方法对于预测 ErbB 抑制剂的结合亲和力非常有效,为虚拟筛选和药物发现提供了宝贵的工具。
Social networks constitute an important approach in the study of animal social behaviour.So far, focus has been on statistical analysis of animal social network structures.However, social networks can also be studied by generative network models - procedures that create simulated network structures.这些模型在更广泛的网络科学中起着关键作用,但是尽管偶尔使用,但在动物行为领域尚未充分整合。We believe that generative network models have considerable unexploited potential as a tool for understanding animal social systems.在这里:1)我们提供了生成网络模型的一般介绍,包括对它们用于调查更广泛网络科学的问题的描述,关键模型特征的解释以及对常见模型的概述; 2)我们考虑有关动物社会行为研究的生成网络模型,包括有关动物系统问题的描述,可以用于研究(通过案例研究证明),概述动物行为研究的概述,这些研究使用了生成网络建模,关键模型对于动物行为研究的相关性以及如何选择用于动物社会系统研究的合适的生成网络模型。We hope that this can help to further integrate generative network models into the study of animal sociality.
人们认为,人类能够自适应地执行各种任务的能力源自认知信息的动态转换。我们假设这些转换是通过连接枢纽(选择性整合感觉、认知和运动激活的大脑区域)中的连接激活来实现的。我们利用最近使用功能连接来映射大脑区域之间活动流的进展,在认知控制任务期间从 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流来验证连接枢纽在认知计算中的重要性。这些经验指定的模拟通过在连接枢纽中整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接枢纽在支持灵活认知计算方面的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
网络上的信息扩散模型位于AI研究的最前沿。此类模型的动态通常是流行病学的随机模型,不仅用于模拟感染,还为各种现象建模,包括计算机病毒的行为和病毒营销活动。在这种情况下的一个核心问题是如何有效检测主体图中最有影响力的顶点,以使感染表现出最长的时间。在结合了顶点的重新感染的过程中,例如SIS过程,理论研究鉴于参数阈值,其中Prosess的生存时间从对数迅速转变为超级顺序。这些结果与启动配置相关的直觉与之相矛盾,因为该过程将始终快速死亡或几乎无限期地生存。这些结果的缺点是,迄今为止,尚未对结合短期免疫力(或创意广告疲劳)的模型进行过这样的理论分析。我们通过研究SIRS过程(一种更现实的模型)来减少文献中的这一差距,除了再感染外,还结合了短期免疫力。在复杂的网络模型上,我们确定了该过程成倍长期生存的参数制度,并且对于随机图,我们获得了一个紧密的阈值。基础这些结果是我们的主要技术贡献,显示了SIRS流程的生存时间的阈值行为,该过程具有大型扩展器子图(例如社交网络模型)。
等效磁网络(EMN)方法似乎是电动机中磁场的一种更有效的分析方法,比等效磁路方法(EMC)[11]和比有限元方法(FEM)相比,相结合了更高的计算精度和更快的计算速度。W. Shi等。研究了具有V形磁铁结构的PMSM的EMN,该结构可以准确计算磁场分布并模拟电动机的抗磁力化能力[12]。J. Zhang等。 提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。 尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。 然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。 H. Kwon等。 研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。 G. Liu等。 研究了具有单层V形磁体结构的PMSM的动态EMN模型。 其正确性通过FEM和实验验证[15]。 但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。J. Zhang等。提出了双层磁铁结构永久磁铁同步不情愿电动机,并建立了其EMN模型,该模型可以准确计算电动机的气隙通量密度分布,并用于转子结构的设计和优化[13]。尽管如此,[12]和[13]中的EMN模型不可用于计算绕道通量,电动力(EMF)和扭矩波形以及转子旋转。然后,介绍了根据转子位置修改EMN在定子和转子之间的连接的动态EMN模型,以解决此问题。H. Kwon等。研究并建立了具有表面无磁体结构的PMSM的动态EMN模型,该模型可以获得与FEM相似的磁场计算结果[14]。G. Liu等。研究了具有单层V形磁体结构的PMSM的动态EMN模型。其正确性通过FEM和实验验证[15]。但是,在本文中对拟议的DVMPMSM的动态EMN模型没有相关的研究。在[16]中,动态EMN模型用于表面安装的PMSM的多目标优化,这对电动机的快速设计有益。
2 pulvermüller等人,b earlagical c o n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n o o f c o g o ognitive f unctions摘要|神经网络模型是提高我们对复杂大脑功能的理解的潜在工具。要解决这个目标,这些模型必须在神经生物学上是现实的。然而,尽管近年来神经网络在复杂的感知和认知任务上取得了类似人类的表现,但它们与脑解剖学和生理学方面的相似性并不完美。在这里,我们讨论了不同类型的神经模型,包括本地主义,自动缔合性和异性恋,深度和全脑网络,并确定可以改善其生物学合理性的方面。这些方面范围从模型神经元的选择以及突触可塑性和学习的机制到实施抑制和控制以及神经解剖学特性,包括区域结构以及局部和远距离连接。我们重点介绍了开发生物学上的认知理论的最新进展以及基于这些脑部约束的神经模型的机械解释,迄今为止,关于较高脑功能的性质,本地化以及本质,本地化以及个性和系统发育的迄今未解决的问题。在结束时,我们指出了脑约束建模的未来临床应用。简介
摘要 - 甲状腺结节是一种病变,医生通常需要高级诊断工具来检测和进行后续诊断。有监督的深度学习技术,尤其是生成的对抗网络(GAN),已被用来提取基本特征,检测结节并生成甲状腺面膜。但是,由于识别癌症区域和训练模式崩溃的高成本,这些方法在获得培训数据方面面临重大挑战。因此,本研究提出了一个GAN模型的改进,即用于甲状腺结节分割的像素到像素(Pix2Pix)模型,在该模型中,将发生器与监督损失功能合并,以解决GAN训练期间的不稳定性。该模型使用了具有u-Net体系结构启发的编码码头结构的生成器来产生掩码。该模型的歧视者由多层卷积神经网络(CNN)组成,以比较真实和生成的面具。此外,使用三个损失函数,即二进制跨透明镜丢失,软骰子丢失和jaccard损失,并结合损失gan来稳定GAN模型。基于结果,提出的模型从超声甲状腺结节图像中实现了97%的癌症区域检测准确性,并使用稳定模型对其进行了分割,其发电机损耗函数值为0.5。简而言之,这项研究表明,与半监视分割模型相比,改进的PIX2PIX模型在结节分割精度方面产生了更大的灵活性。关键字 - 甲状腺结节分割,超声图像,深度学习,生成对抗网络,pix2pix,损失功能
他们的实验验证了内部复杂性模型在处理复杂任务的有效性和可靠性,为将神经科学的动态特性融入人工智能提供了新的方法和理论支持,也为优化和提升人工智能模型的实用性能提供了可行的解决方案。