冠状动脉疾病(CAD)是发达和发展中的死亡的主要原因。这项研究的目的是通过机器学习和评估该方法来确定冠状动脉疾病的危险因素。使用公开可用的国家健康和营养检查调查(NHANES)进行了回顾性,横断面研究(NHANES),该研究完成了人口,饮食,运动和心理健康问卷并拥有实验室和体格检查数据的患者。单变量逻辑模型(以CAD为结果)用于识别与CAD相关的协变量。在最终的机器学习模型中包括在单变量分析中具有P <0.0001的协变量。机器学习模型XGBoost由于文献中的普遍性以及其在医疗保健术前的预测准确性提高而使用。模型协变量根据覆盖统计量进行排名,以识别CAD的危险因素。构造的加性解释(SHAP)解释被用来可视化这些潜在危险因素与CAD之间的关系。在这项研究中符合纳入标准的7,929名患者中,女性为4,055(51%),男性为2,874(49%)。平均年龄为49.2(SD = 18.4),有2,885名(36%)白人患者,2,144名(27%)黑人患者,1,639名(21%)西班牙裔患者和1,261例(16%)其他种族患者。总共338例(4.5%)患有冠状动脉疾病。将它们拟合到XGBoost模型中,AUROC = 0.89,灵敏度= 0.85,特异性= 0.87(图1)。按覆盖范围排名前四的最高特征,这是协变量对整体模型预测的百分比贡献的度量,是年龄(覆盖率= 21.1%),血小板计数(覆盖= 5.1%),心脏病的家族史(覆盖率= 4.8%)和胆固醇总胆固醇(覆盖率= 4.1%)。机器学习模型可以使用人口统计学,实验室,体格检查和生活方式协变量有效预测冠状动脉疾病,并确定关键的危险因素。
人们认为,人类自适应地执行各种任务的能力源于认知信息的动态转换。我们假设这些转换是通过“连接中枢”的连接激活实现的。连接中枢是选择性整合感觉、认知和运动激活的大脑区域。我们利用最新进展,利用功能连接映射大脑区域之间的活动流,从认知控制任务期间的 fMRI 数据构建任务执行神经网络模型。我们通过模拟这个经验估计的功能连接模型上的神经活动流,验证了连接中枢在认知计算中的重要性。这些经验指定的模拟通过在连接中枢整合感觉和任务规则激活产生了高于偶然的任务表现(运动反应)。这些发现揭示了连接中心在支持灵活的认知计算中的作用,同时证明了使用经验估计的神经网络模型深入了解人类大脑认知计算的可行性。
现有的智能空间机器视觉技术大多面向具体应用,不利于知识共享和重用,大部分智能设备需要人参与控制,不能主动为人提供服务。针对以上问题,本研究提出基于深度网络模型的智能工厂,能够基于庞大的数据库进行数据挖掘和分析,使工厂具备自学习能力,在此基础上完成能耗优化、生产决策自动判断等任务。基于深度网络模型,提高了模型对图像分析的准确率。增加隐层数会导致神经网络出现误差,增加计算量,可根据模型特点选择合适的神经元个数。当IoU阈值取0.75时,其性能同比提升1.23%。由非对称多个卷积核组成的残差结构,不仅增加了特征提取层数,还可以让非对称图像细节得到更好的保留。训练好的深度网络模型识别准确率达到99.1%,远高于其他检测模型,其平均识别时间为0.175s。在机器视觉技术研究中,基于深度网络模型的智能工厂不仅保持了较高的识别准确率,还满足了系统的实时性要求。
深度神经网络 (DNN) 的几何描述有可能揭示神经科学中计算模型的核心原理,同时抽象出模型架构和训练范例的细节。在这里,我们通过量化其自然图像表示的潜在维数来检查视觉皮层的 DNN 模型的几何形状。一种流行的观点认为,最佳 DNN 将其表示压缩到低维子空间以实现不变性和鲁棒性,这表明更好的视觉皮层模型应该具有低维几何形状。令人惊讶的是,我们发现了一个相反方向的强烈趋势——在预测猴子电生理学和人类 fMRI 数据中对伸出刺激的皮层反应时,具有高维图像子空间的神经网络往往具有更好的泛化性能。这些发现适用于 DNN 的各种设计参数,它们提出了一个普遍原则,即高维几何形状为视觉皮层的 DNN 模型带来了显著的好处。
引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
引言:量子机器学习 (QML) [1] 使用参数化量子电路 [2] 作为统计模型,近年来引起了广泛关注,并被应用于自然科学 [3-8] 或生成建模 [9-13]。即使 QML 模型具有高表达能力 [14] 且在某些特定情况下表现出优于经典模型 [15,16],但在深度神经网络时代,量子计算机 [17] 能获得什么样的优势仍不清楚。另一方面,量子数据可能是应用 QML 的自然范例,量子优势已得到证实 [18]。人们希望可以通过量子传感器 [19] 收集量子数据,并最终直接连接到量子计算机。在本文中,我们模拟了通过在量子设备上直接构建量子数据来处理量子数据的可能性。我们使用变分基态求解器来获得真实基态的近似值,以模拟嘈杂的真实世界数据。具体而言,本信函讨论了使用监督学习方法计算哈密顿量 H 的基态相图。即使已经针对二元情况 [ 20 , 21 ] 探索了类似的问题,具有多个类别 [ 22 ] 并在超导平台上进行了计算 [ 23 ],所有这些方法都受到构造限制,即瓶颈。事实上,由于训练需要标签,并且因为它们是通过分析或数值计算的,这些技术只能加快
正确捕获图像引导的神经外科术中的术中大脑移位是将术前数据与术中几何形状对准数据的关键任务,以确保准确的手术导航。虽然有限元方法(FEM)是一种经过验证的技术,可以通过生物力学制剂有效地近似软组织变形,但其成功程度归结为准确性和速度之间的权衡。为了解决这个问题,该领域中的最新作品提出了通过培训各种机器学习算法获得的数据驱动模型(例如,随机森林,人工神经网络(ANN)),并通过有限元分析(FEA)的结果来加快预测的速度。但是,这些方法在训练过程中没有说明有限元(Fe)网格的结构,以提供有关节点连接性的信息以及它们之间的距离,这可以帮助基于与其他网状节点的强力负载点的接近近似组织变形。因此,这项工作提出了一个新颖的框架Physgnn,该模型是通过利用图形神经网络(GNN)来近似于FEM解决方案的模型,该模型能够考虑到网格结构信息,并在未结构化的网格和复杂的拓扑结构上考虑网格结构信息和归纳性学习。从经验上讲,我们证明了所提出的体系结构有望准确且快速的软组织变形近似,并且与最新的ART(SOTA)算法具有竞争力,同时有望增强计算可行性,因此适用于神经外科设置。
使用神经生物学约束的人类大脑语义学习模型来模拟具体和抽象概念的习得,无论有无言语标签。使用赫布学习机制模拟概念习得和语义学习。我们测量了网络的类别学习性能,定义为它成功地(i)将部分重叠的感知实例分组为单个(抽象或具体)概念表征,同时(ii)仍然区分不同概念的表征的程度。给定概念的语言标签与感知实例的共存通常会改善网络对类别的学习,对抽象概念的有益效果明显大于具体概念。这些结果为语言结构对概念形成和这些概念实例的感知运动处理的因果影响提供了神经生物学解释:在概念习得期间提供言语标签可以改善皮质机制,通过这种机制,对物体和动作的体验以及单词的学习会导致形成特定概念和含义的神经元集合。此外,本研究结果还做出了一个新颖的预测,即这种“沃尔夫”效应应该受到所习得语义类别的具体性/抽象性的调节,语言标签更有利于抽象概念的学习,而非具体概念的学习。本文是主题问题“互动中的概念:社会参与和内在体验”的一部分。
使用神经生物学约束的人类大脑语义学习模型来模拟具体和抽象概念的习得,无论有无言语标签。使用赫布学习机制模拟概念习得和语义学习。我们测量了网络的类别学习性能,定义为它成功地(i)将部分重叠的感知实例分组为单个(抽象或具体)概念表征,同时(ii)仍然区分不同概念的表征的程度。给定概念的语言标签与感知实例的共存通常会改善网络对类别的学习,对抽象概念的有益效果明显大于具体概念。这些结果为语言结构对概念形成和这些概念实例的感知运动处理的因果影响提供了神经生物学解释:在概念习得期间提供言语标签可以改善皮质机制,通过这种机制,对物体和动作的体验以及单词的学习会导致形成特定概念和含义的神经元集合。此外,本研究结果还做出了一个新颖的预测,即这种“沃尔夫”效应应该受到所习得语义类别的具体性/抽象性的调节,语言标签更有利于抽象概念的学习,而非具体概念的学习。本文是主题问题“互动中的概念:社会参与和内在体验”的一部分。
图形模型是研究复杂网络的最重要的理论工具之一。其中,已证明指数随机图(ERG)在社交网络的分析中非常有用。在本文中,我们开发了一种从晶格气体的统计力学借用的技术,以解决Strauss的传递网络模型。该模型是很久以前引入的,作为具有高聚类的网络的ERG集合,并在三角形相互作用参数的临界值高于临界值之上表现出第一阶相变,其中两种具有不同链接的不同类型的网络具有不同的链接(或者,或者,或者,替代地,不同的聚类)共存。与以前的均值范围方法相比,我们的方法甚至可以准确地描述了小型网络,并且可以扩展到Strauss的经典模型(例如),即具有不同类型的节点的网络。这使我们能够以均匀的节点来解决模型。我们为后者提供结果,并表明它们准确地重现了蒙特卡洛模拟的结果。