神经网络的硬件实现是利用神经形态数据处理优势和利用与此类结构相关的固有并行性的里程碑。在这种情况下,具有模拟功能的忆阻设备被称为人工神经网络硬件实现的有前途的构建块。作为传统交叉架构的替代方案,在传统交叉架构中,忆阻设备以自上而下的方式以网格状方式组织,神经形态数据处理和计算能力已在根据生物神经网络中发现的自组织相似性原理实现的网络中得到探索。在这里,我们在图论的理论框架内探索自组织忆阻纳米线 (NW) 网络的结构和功能连接。虽然图度量揭示了图论方法与几何考虑之间的联系,但结果表明,网络结构与其传输信息能力之间的相互作用与与渗透理论一致的相变过程有关。此外,还引入了忆阻距离的概念来研究激活模式和以忆阻图表示的网络信息流的动态演变。与实验结果一致,新出现的短期动力学揭示了具有增强传输特性的自选择通路的形成,这些通路连接受刺激区域并调节信息流的流通。网络处理时空输入信号的能力可用于在忆阻图中实现非常规计算范式,这些范式充分利用了生物系统中结构和功能之间的固有关系。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
我们提出了一种高效且可扩展的分区方法,用于将具有局部密集和全局稀疏连接的大规模神经网络模型映射到可重构的神经形态硬件上。计算效率的可扩展性,即实际计算所花费的时间,在超大型网络中仍然是一个巨大的挑战。大多数分区算法还难以解决网络工作负载的可扩展性问题,即寻找全局最优分区并有效地映射到硬件上。由于通信被视为此类分布式处理中最耗能和最耗时的部分,因此分区框架针对计算平衡、内存高效的并行处理进行了优化,目标是低延迟执行和密集的突触存储,并尽量减少跨各个计算核心的路由。我们展示了高度可扩展且高效的分区,用于连接感知和分层地址事件路由资源优化的映射,与随机平衡分配相比,递归地显着减少了总通信量。我们展示了我们在具有不同稀疏度和扇出度的合成网络、小世界网络、前馈网络和果蝇大脑半脑连接组重建方面的成果。我们的方法和实际结果的结合表明,这是一条有希望扩展到超大规模网络和可扩展硬件感知分区的途径。
神经网络的硬件实现是利用神经形态数据处理优势和利用与此类结构相关的固有并行性的里程碑。在这种情况下,具有模拟功能的忆阻设备被称为人工神经网络硬件实现的有前途的构建块。作为传统交叉架构的替代方案,在传统交叉架构中,忆阻设备以自上而下的方式以网格状方式组织,神经形态数据处理和计算能力已在根据生物神经网络中发现的自组织相似性原理实现的网络中得到探索。在这里,我们在图论的理论框架内探索自组织忆阻纳米线 (NW) 网络的结构和功能连接。虽然图度量揭示了图论方法与几何考虑之间的联系,但结果表明,网络结构与其传输信息能力之间的相互作用与与渗透理论一致的相变过程有关。此外,还引入了忆阻距离的概念来研究激活模式和以忆阻图表示的网络信息流的动态演变。与实验结果一致,新出现的短期动力学揭示了具有增强传输特性的自选择通路的形成,这些通路连接受刺激区域并调节信息流的流通。网络处理时空输入信号的能力可用于在忆阻图中实现非常规计算范式,这些范式充分利用了生物系统中结构和功能之间的固有关系。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
图1。组平均功能连通性(IPLV)到左主运动皮层(LM1,中间面板中左半球的黑点)。中间面板显示基于表面的投影,左右面板显示了同一地图的两个不同的拼字图。所有视图都强调,LM1在功能上连接到右运动皮层(RM1)和左补充运动区(LSMA),这是由其质心的MNI坐标定义的。
图 5 识别预测结果的跨诊断成分。我们使用 Cox 模型的偏最小二乘回归来找到一个成分 (a),该成分最大化了连接和审查死亡时间之间的协方差。连接代表 PLSR 权重,因此对于得分较高的受试者,红色表示连接较强,蓝色表示连接较弱。PSP 患者和 CBS 患者 (c) 之间的此成分没有差异。使用五倍交叉验证并使用一致性分析和综合曲线下面积评估结果,我们发现连接提供了患者人口统计信息和住院运动之外的额外信息,但结合结构、临床和基线指标可提供最佳预测准确性 (de)。(DMN,默认模式网络;DAN,背侧注意网络;FPN,额顶网络;SM,感觉运动;TN,丘脑网络;VAN,腹侧注意网络)。
下载后,样本登记申请表无需网络连接即可使用。记录样本信息后,按“保存”。手机再次接入互联网后,信息将自动上传。为确保采样后所有信息均已上传,请确保在恢复网络连接后至少打开一次样本登记申请表。申请表包含本《现场采样手册》的电子版,以及包含采样说明的视频(需要网络连接)。
这是仅当录制开启时对电池工作寿命的基本估计。当开启红外线、GPS 和/或网络连接时,应考虑额外的功耗。
识别问题:明确定义网络问题的症状和范围,包括受影响的设备、服务和网络性能下降。 检查基本连接:验证设备、电缆和网络设备之间的物理连接,确保它们安全且正常运行。 测试网络连接:使用诊断工具测试网络连接,ping 设备和网站以检查网络可达性。 分析网络日志:查看网络日志和事件日志以识别任何错误消息、警告标志或可疑活动。 查阅文档:参阅网络设备、软件和协议的相关文档以了解配置设置和故障排除指南。 寻求专家帮助:如果您无法独立解决问题,请联系网络专业人员或技术支持寻求帮助。