罗斯基勒大学可以在持续的学生辅导中使用人工智能。但是,如果使用人工智能提供自动化指导,例如以问答机器人的形式,则必须明确声明,并且所有答案都必须附有免责声明,说明文本是自动生成的,因此可能会出现错误。至少,必须向用户(学生或我们课程的申请人)说明,由于文本是使用人工智能生成的,因此答案可能会出现错误。如果答案引起疑问,还应指导用户联系相关人员。此外,还应有一个流程来保证所提问题的答案的质量,以定期检查答案是否符合我们的标准。
1935 年,爱因斯坦、波多尔斯基和罗森 (EPR) 提出了一个量子理论悖论 [ Phys. Rev. 47 , 777 (1935) ]。他们考虑了两个量子系统,最初允许它们相互作用,后来它们分离。对一个系统进行的物理可观测量必须立即影响另一个系统中的共轭可观测量 — — 即使两个系统之间没有因果关系。作者认为这是量子力学不一致性的一个明显表现。在 Bjorken、Feynman 和 Gribov 提出的核子部分子模型中,部分子(夸克和胶子)被外部硬探针视为独立的。标准论点是,在被提升到无限动量框架的核子内部,在硬相互作用过程中,具有虚拟性 Q 的虚拟光子探测到的部分子与核子的其余部分没有因果关系。然而,由于色限制,部分子和其余核子必须形成色单重态,因此必须处于强关联量子态——因此我们在亚核子尺度上遇到了 EPR 悖论。在本文中,我们提出了一种基于部分子量子纠缠的解决这一悖论的方法。我们设计了一种纠缠实验测试,并使用大型强子对撞机的质子-质子碰撞数据进行测试。我们的结果为亚核子尺度上的量子纠缠提供了强有力的直接指示。
神经退行性疾病是由细胞和神经元在大脑和周围神经系统的功能丧失引起的疾病,包括阿尔茨海默氏病(AD),帕金森氏病(PD),杏仁核外侧硬化症(ALS)以及额叶摄取症状(FTD)和其他。由于对神经退行性疾病的病理机制不完全理解,目前可用的治疗方法只能减轻某些相关症状,并且仍然缺乏有效的治疗方法。大多数神经退行性疾病具有常见的细胞和分子机制,这是淀粉样蛋白样蛋白聚集体和包含体的形成。神经退行性疾病中蛋白质聚集体的广泛存在表明它们在疾病发生和进展中的特殊作用。长期以来,成核和聚集被认为是蛋白质骨料形成的唯一途径。然而,最近的研究表明,这些蛋白可能会经历另一个聚集过程,即液相分离介导的聚集。相分离是生物分子通过弱的多价相互作用形成动态凝结的过程。在这些冷凝物中,生物分子浓度高度富集,并且仍然与外部环境保持动态交换。相分离是由弱的多价相互作用(例如静电,π相关,氢键和疏水相互作用)介导的。对于特定分子,它们的相分离行为可能主要由一个或某些相互作用介导。但是,生活系统中的相互作用更为复杂。有很多工作着眼于在各种系统中做出重大贡献的相互作用类型。这些发现可能有助于我们进一步了解序列上的小扰动者如何改变相位分离行为,以及为什么自然发生的突变会产生重要的生理和生物物理效应。在活生物体中进行相分离的蛋白质通常包含本质上无序的区域(IDR)或本质上无序的蛋白质(IDP)。淀粉样蛋白通常具有这种特征。这样的IDR/ IDP没有稳定的折叠结构,并且以动态形式存在于解决方案中。由于缺乏清晰的三维结构,IDR/IDP具有更高的动力和灵活性,因此为分子间接触和相互作用提供了更多机会。近年来,研究人员表明,许多神经退行性疾病与淀粉样淀粉样蛋白样蛋白可以进行相分离,这表明淀粉样蛋白样蛋白和病理学的相行为之间存在潜在的关联。在这里,我们总结了有关几种神经退行性疾病相关的淀粉样蛋白的相分离和聚集的最新研究,包括Aβ,TAU,α-突触核蛋白,TDP-43和SOD1。它们是与神经退行性疾病相关的典型病理蛋白,并且已被证明与过去几十年中相关疾病具有很高的相关性。他们的共同特征是患者中发现的淀粉样蛋白聚集体。最近的研究表明,它们也具有相分离的特性,这可能与病理聚集体的形成相关。因此,我们总结了这些淀粉样蛋白的相位行为的最新研究,这可能带来调节相关病理过程和治疗疾病的潜在机会。我们希望本文可以帮助加深对神经退行性疾病中蛋白质的病理机制的理解,并激发疾病治疗的新思想。
现代研究人员观察社会及其机构中数字化和技术化进程的增长。在这种条件下,社会主体处于一种不确定的状态,他们的能力和实践面临着来自社会进程虚拟化的严重压力。实施“城市权利”的过程也不例外:数字化正在改变信息、整合、动员的实践[1]、城市居民主动性的体现、他们与当局沟通的形式以及公民参与。数字技术的引入被视为一个矛盾的过程,人们越来越多地提到管理过程的去民主化和技术官僚化的影响,这增加了对城市人口的控制,并造成了让人口参与城市环境发展和转型的假象[2]。
参考文献:1. Skyrizi [包装说明书]。伊利诺伊州北芝加哥:AbbVie Inc.;2024 年 6 月。2. Menter A,Korman NJ,Elmets CA,等人。银屑病和银屑病关节炎的护理管理指南。第 4 节:使用传统全身药物治疗和治疗银屑病的护理指南。美国皮肤病学杂志。2009;61(3):451-485。3. Menter A,Korman NJ,Elmets CA,等人。银屑病和银屑病关节炎的护理管理指南。第 6 节:银屑病和银屑病关节炎的治疗护理指南:基于病例的介绍和基于证据的结论。美国皮肤病学杂志。2011;65(1):137-174。 4. Gordon KB、Strober B、Lebwohl M 等。risankizumab 治疗中度至重度斑块状银屑病(UltIMMa-1 和 UltIMMa-2)的疗效和安全性:两项双盲、随机、安慰剂对照和乌司他丁对照的 3 期试验结果。柳叶刀。2018;392(10148):650-661。5. Menter A、Strober BE、Kaplan DH 等。AAD-NPF 联合生物制剂银屑病管理和治疗护理指南。J Am Acad Dermatol。2019;80(4):1029-1072。6. 结核病感染检测。疾病控制与预防中心。 2024 年 1 月 11 日检索自:https://www.cdc.gov/tb/topic/testing/tbtesttypes.htm。7. Singh JA、Guyatt G、Ogdie A 等人。2018 年美国风湿病学会/美国国家银屑病基金会银屑病关节炎治疗指南。Arthritis Rheum。2018;71:5-32。8. Gossec L、Baraliakos X、Kerschbaumer A 等人。欧洲抗风湿病联盟 (EULAR) 关于使用药物疗法治疗银屑病关节炎的建议:2019 年更新。Ann Rheum Dis。2020;79(6):700-712。9. D'Haens G、Panaccione R、Baert F 等人。 Risankizumab 作为克罗恩病的诱导疗法:来自 3 期 ADVANCE 和 MOTIVATE 诱导试验的结果。柳叶刀。2022;399(10340):2015-2030。10. Lichtenstein GR、Loftus Jr EV、Isaacs KI 等人。ACG 临床指南:成人克罗恩病的治疗。Am J Gastroenterol。2018;113:481-517。11. Coates LC、Soriano ER、Corp N 等人。银屑病和银屑病关节炎研究与评估组 (GRAPPA):2021 年银屑病关节炎最新治疗建议。自然风湿病学评论。2022;18(8):465-479。 13. Menter A、Gelfand JM、Connor C 等人。美国皮肤病学会-美国国家银屑病基金会联合制定的全身非生物疗法治疗银屑病的护理指南。《美国皮肤病学杂志》。2020;82(6):1445-1486。14. Talley NJ、Abreu MT、Achkar J 等人。炎症性肠病药物治疗的循证系统评价。《美国胃肠病杂志》。2011;106(补充1):S2-S25。15. Rubin DT、Ananthakrishnan AN 等人。2019 年 ACG 临床指南:成人溃疡性结肠炎。《美国胃肠病杂志》。2019;114:384-413。 16. Feuerstein JD、Isaacs KL、Schneider Y 等。AGA 中度至重度溃疡性结肠炎管理临床实践指南。胃肠病学。2020;158:1450。
维格纳负性作为非经典性的著名指标,在连续变量系统的量子计算和模拟中起着至关重要的作用。最近,已经证明爱因斯坦-波多尔斯基-罗森转向是两个远程模式之间产生维格纳负性的先决条件。受现实世界量子网络需求的推动,我们从定量的角度研究了多部分场景中生成的维格纳负性的可共享性。通过建立类似于广义 Co ffiman-Kundu-Wootters 不等式的一夫一妻制关系,我们证明了维格纳负性的量不能在不同模式之间自由分布。此外,对于光子减法(实验实现的主要非高斯运算之一),我们提供了一种量化远程生成的维格纳负性的通用方法。通过这种方法,我们发现高斯可控性和产生的维格纳负性的数量之间没有直接的定量关系。我们的研究结果为利用维格纳负性作为基于非高斯场景的众多量子信息协议的宝贵资源铺平了道路。
加入德国联邦国防军军官培训机构,在弗伦斯堡的穆尔维克海军学院以及“Gorch Fock”和“Deutschland”训练舰上接受学术研究,在慕尼黑德国联邦国防军大学接受航空航天工程学术研究,在约维尔(英国)的 GKN Westland 公司接受飞机工程官/武器系统 Mk88 Sea Lynx 适航性再验证检查员的培训,担任飞机工程官、工程(船上作业)和安全组负责人以及首席评估员,海军航空联队 3“Graf Zeppelin”,Nordholz 中队指挥官,技术中队直升机,海军航空联队 3“Graf Zeppelin”,Nordholz 第 38 海军上将参谋课程,德国联邦国防军指挥参谋学院,汉堡 S3(作战)参谋和副指挥官,海军航空联队 3“Graf Zeppelin”,Nordholz 技术组联邦国防部武装部队参谋部 FüS VI 处控制科,波恩 “齐柏林伯爵”海军航空兵第 3 联队技术组指挥官,诺德霍尔茨 海军办公室协调、资源、管理科科长,罗斯托克 海军办公室参谋长,罗斯托克 2010–2012 联邦国防军规划海军科科长,联邦国防部海军参谋部,波恩 2012–2013 联邦国防部规划局规划 III 1 – IPP 政策科科长,波恩 2013–2014 德国联合支援服务总部规划部科长,波恩 2014–2017 海军支援司令部司令,威廉港 2017–2020 德国海军总部物资、指挥和控制部科长,罗斯托克 2020–2022德国海军总部,罗斯托克 自 2022 年 3 月起 德国舰队及支援部队司令兼德国海军副司令,德国海军总部,罗斯托克
虽然红队测试是检查公司抵御真实攻击能力(包括预防、检测和事件响应能力)的良好解决方案,但红队测试服务非常耗时,并且不能经常进行(例如每季度一次)。此外,由于红队仅针对关键系统并尽可能隐秘地执行服务,因此可能无法覆盖多种攻击技术。然后,其他威胁行为者可能会使用未发现的技术,包括非公开的 APT、恶意软件或广泛的勒索软件攻击。卡巴斯基对手攻击模拟服务通过模拟网络杀伤链每个阶段的各种威胁行为者的技术,对公司的检测能力进行详细评估,从而弥补这一差距。该服务具有以下目标:•分析收集到的遥测数据的覆盖范围•评估客户对评估范围内每个测试的检测能力•识别检测安全控制中的漏洞•提供修复这些漏洞的建议。对手攻击模拟服务涵盖与内部基础设施相关的网络杀伤链的关键阶段。模拟测试与 MITRE ATT&CK 框架的策略和技术相对应。根据所选的不同测试集,该服务可以专注于特定目标。选择对手攻击模拟服务的测试可以基于:• 特定 APT 团体使用的技术 • 特定地区或特定行业的 APT 团体使用的技术 • 根据 MITRE ATT&CK,所有 APT 团体使用的最流行技术