量子纠缠作为一种重要资源是量子力学最显著的特征之一,在量子信息论、量子隐形传态[1]、通信和量子计算[2,3]中都发挥着核心作用。由于其基础性作用,在分离子系统之间产生纠缠态是一个重要课题。近年来,已提出了多种产生纠缠态的方法,其中之一就是 Jaynes-Cummings 模型 (JCM)。JCM 解释了量化电磁场和原子之间的相互作用 [4]。JCM 是一个简单但适用的工具。在过去的二十年里,人们致力于将 JCM 应用到量子信息[5-7]和量子隐形传态[8]中。由 JCM 诱导的纠缠态已被用作量子通道 [9]。 Zang 等人 [10] 利用两能级原子与大失谐单模腔场相互作用,将二分非最大纠缠态转变为 W 态。原子与单模电磁腔场相互作用的纠缠动力学已被研究 [11]。由于 JCM 在量子光学中的重要性,它已被扩展
其中 A ′ 和 B ′ 的维数为 d 。由公式 (2) 可知,当 d 较大时,公式 (2) 给出的量子 Fisher 信息接近于 16,这将表明这是纠缠态可以达到的最大值。因此,在这一计量任务中,PPT 态几乎与具有非正部分转置的纠缠态一样有用。证明将在后面与量子态的定义一起给出。我们将看到,可分离态的 FQ [ ϱ, H ] 的最大值是 8。由于公式 (2) 给出的状态 ϱ F n 的量子 Fisher 信息对于所有 d 都大于该值,因此状态 ϱ F n 是纠缠态。 (参见图 1 中对此事实的确认。)我们寻找计量学上有用的 PPT 状态的起点是文献 [ 7 ] 中在二分系统中通过数值方法发现的此类状态族。这些状态是通过对 PPT 状态集的量子 Fisher 信息进行非常有效的数值最大化而获得的;因此,我们可以预期,对于所考虑的系统规模,它们在 PPT 状态中具有最大的量子 Fisher 信息。在维度高达 12 × 12 的二分系统中发现了这些状态。在本文中,我们将注意力限制在具有
摘要:在当今竞争激烈的商业环境中,组织越来越需要对灵活且经济高效的业务流程进行建模和部署。在这种情况下,可配置流程模型用于通过以通用方式表示流程变体来提供灵活性。因此,类似变体的行为被分组到包含可配置元素的单个模型中。然后根据特定需求定制和配置这些元素。但是,配置元素的决策可能不正确,从而导致严重的行为错误。最近,流程配置已扩展到包括云资源分配,以通过允许访问按需 IT 资源来满足业务可扩展性的需求。在这项工作中,我们提出了一个基于命题可满足性公式的形式化模型,允许找到正确的元素配置,包括资源分配配置。此外,我们建议根据云资源成本选择最佳配置。这种方法可以为设计人员提供正确且经济高效的配置决策。
双向量子隐形传态是双方交换量子信息的基本协议。具体来说,两个人利用共享资源状态以及本地操作和经典通信 (LOCC) 来交换量子态。在这项工作中,我们简要介绍了我们的配套论文 [AU Siddiqui and MM Wilde,arXiv:2010.07905 (2020)] 的贡献。我们开发了两种不同的方法来量化非理想双向隐形传态的误差,即通过归一化钻石距离和通道不保真度。然后,我们确定这两个指标给出的值对于此任务是相等的。此外,通过将 LOCC 允许的操作集放宽到完全保留部分转置正性的操作集,我们获得了非理想双向隐形传态误差的半定规划下限。我们针对一些关键示例评估了这些界限——各向同性状态和根本没有资源状态的情况。在这两种情况下,我们都找到了解析解。第二个例子为经典与量子双向隐形传态建立了基准。我们研究的另一个例子包括两个贝尔态,它们通过广义振幅衰减通道发送。对于这种情况,我们找到了误差的解析表达式,以及与前者一致的数值解,精度达到数值精度。
回想一下位移算符如何变换光子振幅算符,ˆ D ( α )ˆ a † ˆ D † = ˆ a † − α ∗ ,状态可以写成位移和创造的连续
量子模拟的复杂性并非仅仅源于纠缠。量子态复杂性的关键方面与非稳定器或魔法有关 [1]。Gottesman-Knill 定理 [2] 表明,即使是一些高度纠缠的状态也可以被有效地模拟。因此,魔法是一种资源,代表准备量子态所需的非 Clifford 操作(例如 T 门)的数量。我们使用稳定器 R´enyi 熵 [3] 证明,与具有零动量的状态相比,具有非零晶格动量的退化量子多体基态允许魔法的增量 [4]。我们通过分析量化了这一增量,并展示了有限动量不仅增加了长程纠缠 [5],还导致魔法的变化。此外,我们还提供了 W 状态及其广义(量子信息界经常讨论)与受挫自旋链基态之间的联系。
量子隐形传态的理想实现依赖于获得最大纠缠态;然而,在实践中,这种理想状态通常是无法获得的,人们只能实现近似隐形传态。考虑到这一点,我们提出了一种量化使用任意资源状态时近似隐形传态性能的方法。更具体地说,在将近似隐形传态任务定义为对单向局部操作和经典通信 (LOCC) 信道上的模拟误差的优化之后,我们通过对更大的两 PPT 可扩展信道集进行优化来建立此优化任务的半确定松弛。我们论文中的主要分析计算包括利用身份信道的酉协方差对称性来显著降低后者优化的计算成本。接下来,通过利用近似隐形传态和量子误差校正之间的已知联系,我们还应用这些概念来建立给定量子信道上近似量子误差校正性能的界限。最后,我们评估各种资源状态和渠道示例的界限。
本文感兴趣的特定量子态是两个相位相反的相干态的叠加,通常称为(薛定谔)猫态。猫态可用作量子计算机中的逻辑量子比特基础 [2, 3]。它们还可以用作干涉仪的输入态,干涉仪能够以比光波长通常施加的限制更高的精度测量距离 [4]。仅通过幺正演化将单个相干态转换为猫态需要很强的非线性。此外,猫态对光子吸收的退相干极为敏感。出于这些原因,平均包含多个光子的猫态仅在腔量子电动力学实验中产生,在该实验中,原子与限制在高精度光学腔内的电磁场相互作用 [5, 6]。在这种实验中,腔将光学模式限制在一个很小的体积内,因此
人们从物质分类的角度发现了许多全新的拓扑电子材料,包括拓扑绝缘体[5–8]和拓扑半金属[9]。与此同时,量子力学波与经典波的类比启发人们将凝聚态物理学中的许多概念推广到经典波系统,如电磁波、声波和机械波系统。直观地,人们可以将经典波的控制方程(例如电磁波的麦克斯韦方程)转化为哈密顿量。按照这种方法,最初为量子力学波提出的拓扑相最近已在各种经典波系统中实现,[10–17],从而实现了拓扑激光器[18–21]、鲁棒光延迟线[22]和高质量片上通信等许多实际应用。 [23,24] 最近的进展进一步将拓扑态从厄米波系统扩展到非厄米波系统,
Aurubis开发的过程集中在锂优先的浸出上,从而将大多数锂作为硫酸盐溶液回收,可以纯化或转化为碳酸锂等中间体。随后,靶向镍和钴的浸出过程相对简单,随后清除杂质。从这种浸出溶液中,钴,锰和镍分离并作为可销售中间体回收。富含石墨的浸出残留物已用于浮选流量表开发,该浓缩物最近已经提出了锁定循环测试的碳等级> 92%的碳等级。
