正在开发各种程序以重新表面关节软骨缺陷。自体软骨细胞植入(ACI)涉及从健康组织收集软骨细胞,在体外扩展细胞,并将膨胀的细胞植入软骨缺损。第二代和第三代技术包括自体软骨细胞,支架和生长因子的组合。受损的关节软骨通常无法自行愈合,并且可能与疼痛,功能和残疾丧失有关,并且可能会导致骨关节炎会随着时间的流逝而使人衰弱。这些表现可能严重损害个人日常生活的活动,并对生活质量产生不利影响。常规治疗方案包括清创术,软骨下钻孔,微裂纹和磨蚀性关节置换术。清创术涉及去除滑膜,骨质植物,疏松的关节碎片和患病的软骨,并能够产生症状缓解。软骨下钻孔,微裂缝和磨蚀性关节置换术试图通过诱导纤维球脂肪的生长到软骨缺陷中来恢复关节表面。与原始的透明软骨相比,纤维球杆菌具有承受冲击力或剪切力的能力较小,并且可以随着时间的流逝而退化,通常会导致临床症状恢复。骨软骨移植物和自体软骨细胞植入(ACI)尝试再生透明的软骨,从而恢复耐用的功能。在自体软骨细胞植入中,通过关节镜检查鉴定出健康的关节软骨区域并进行活检。骨软骨移植物,标题为“治疗局灶性关节软骨病变的自体移植和同种异体移植”。将组织发送到由美国食品药品监督管理局(FDA)许可的设施,并在该设施中被切碎并酶消化,软骨细胞通过过滤分离。分离的软骨细胞培养11-21天,以扩大细胞群,测试,然后运回植入。在全身麻醉下,患者进行关节术,并切除软骨病变至正常的周围软骨。已经开发了改进第一代ACI程序的方法,包括使用脚手架或基质诱导的自体软骨细胞植入,由生物相容性的碳水化合物,蛋白质聚合物或合成学组成。迄今为止,唯一的FDA批准的矩阵诱导的自体软骨细胞植入产物是在纸张中提供的,该产品被切成大小并用纤维蛋白胶固定。与第一代技术相比,该过程在技术上更容易,耗时较少,后者需要缝合骨膜或胶原蛋白贴片以及在斑块下注射软骨细胞。关节软骨修复程序的所需特征是(1)容易植入的能力,(2)降低手术发病率,(3)不需要收集其他组织,(4)可以增强细胞增殖和成熟,(5)维持表型,以及(6)以与周围的肉体组织一致。除了改善透明软骨的形成和分布的潜力外,使用基质诱导的自体软骨细胞植入脚手架
摘要目的静脉血栓栓塞症(VTE)仍然是全膝关节置换术(TKA)等大型骨科手术后的一大挑战。本研究的目的是评估初次 TKA 手术后单独使用阿司匹林或直接口服抗凝剂 (DOAC) 进行药物预防的 VTE 风险。方法 该研究纳入了 2016 年至 2020 年期间接受初次 TKA 的 476 名患者。所有患者均接受 AOD(AOD 组)(n = 267)或乙酰水杨酸 (ASA)(ASA 组)(n = 209)的血栓预防。对接受 AOD 和 ASA 治疗的患者的临床结果进行了评估和比较。主要结果是 VTE 的发病率。次要结果是伤口并发症的发生。结果对于接受初次 TKA 的患者,ASA 和 AOD 在预防 VTE 方面具有相当的效果。 AAS 组 (10%) 和 AOD 组 (10.1%, p = 0.98) 的深静脉血栓发生率相似,两组均无肺栓塞病例。 AAS 组(1.4%)和 AOD 组(1.5%)在伤口并发症方面没有显著差异(p = 0.95)。
房室传导阻滞可能是先天性的,也可能是后天性的。先天性房室传导阻滞与心脏缺陷有关,例如房室管缺损、大动脉转位、异位性综合征和法洛四联症,但也可能由于免疫介导的传导问题而在没有结构缺陷的情况下发生,其中系统性红斑狼疮 (SLE) 和母体病毒感染是显著原因。10-12 后天性房室传导阻滞由心肌梗死、药物、电解质失衡、内分泌失调和毒素引起,其中与年龄相关的退化是最常见的原因。13 通常会影响房室传导并可能导致房室传导阻滞的药物包括地高辛、非二氢吡啶类钙通道阻滞剂、β受体阻滞剂、腺苷、I 类和 III 类抗心律失常药物、多奈哌齐和锂。 14 慢性特发性纤维化、年轻人迷走神经张力增高、心肌病、肌营养不良症以及心肌炎和莱姆病等浸润性疾病也可能导致心脏疾病。心脏和瓣膜手术,尤其是经导管主动脉瓣置换术,是额外的风险因素,尤其是对于已有传导系统疾病的男性。15 因心脏传导组织退化而导致的房室传导阻滞在 65 岁以上的人群中更为常见。
骨关节炎是一种影响整个关节组织的复杂性疾病。目前,骨关节炎的非手术治疗重点是缓解疼痛。虽然可以用关节置换术治疗终阶段的骨关节炎,但与Sear c H相关的健康和经济成本可以用于替代性的非外科饮食,以延迟骨关节炎和pr omote cartila ge r e e Pair ta。与传统的TR饮食不同,基因疗法的ARCH允许在特定部位持续表达治疗蛋白。In this re vie w, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors ( non-vir al, vir al ) , the genes deli v er ed ( transcription factors, gr o wth factors, inflammation-associated c ytokines, non-coding RNAs ) and the mode of gene deli v er y ( dir ect deli v er y, indir ect deli v er y)。我们强调了基因编辑技术CRISPR/CAS9在骨关节炎中的应用和开发。最后,我们确定了基因治疗骨关节炎的临床翻译中的当前问题和解决方案。
心脏病学中的个性化治疗必不可少的是鉴定患者表型,并解释其与后期治疗后结局的关联,例如在经导管主动脉瓣置换术中。通过无监督的聚类方法获得表型后,一种方法是使用机器学习来预测群集成员资格,以解释定义每个群集的患者特征。在以前的工作中,我们由于易于解释性而使用了决策树,这在捕获数据中的复杂关系方面受到限制。我们通过将Shapley添加说明(SHAP)值与高级机器学习算法集成在一起来缓解此问题。为了展示我们的方法,我们使用来自581位TAVR患者的单中心数据确定了六个不同的患者簇,并使用K-均值进行了各种分类器来对群集成员进行分类,并具有最佳的梯度增强性能(F1得分:0.879)。形状值用于解释集群成员资格,揭示了影响结果的关键特征。例如,肌酐水平和环形区域是高风险表型的重要预测指标。这种基于Shap的方法将模型的复杂性与解释性平衡,从而为患者表型提供了强大的,详细的见解。1。简介
对于没有单独抗凝指征的患者,先前的指南建议在 TAVI 后使用双重抗血小板治疗 (DAPT) 3-6 个月,该建议基于原始临床试验的方案,该试验比较了 TAVI 与外科主动脉瓣置换术,后者采用 1-6 个月的 DAPT。这些试验中经验性使用 DAPT 的理由是,近 75% 接受 TAVI 的患者有纤维蛋白或血栓物质栓塞碎片的证据,并且推测 DAPT 可以减少围手术期和长期动脉粥样硬化血栓形成事件。然而,包括四项随机对照试验的患者水平荟萃分析在内的最新数据发现,与 ASA 相比,接受 DAPT 的患者出血风险增加,而临床血栓形成并未减少。此外,与单独抗血小板治疗相比,抗凝增加了没有其他抗凝指征的 TAVI 患者的出血和死亡风险。因此,最近指南中的建议已经发生变化,现在主要推荐单一抗血小板治疗。 2020 年美国心脏病学会/美国心脏协会的建议在这些最新数据公布之前就已发布,该建议对于出血风险较低的患者考虑使用 3-6 个月的 DAPT 或 3 个月的华法林(目标 INR 2.5)。
人体肌肉骨骼系统是人体的关键系统之一,由不同类型的骨骼、肌肉、韧带和肌腱组成。肌肉骨骼系统的损伤和疾病将主要影响人体的运动 [2, 3]。肌肉骨骼疾病的特点是疼痛和活动、灵活性和整体功能水平受限,降低了患者的工作能力和维持良好生活质量。最近的全球疾病负担数据分析显示,全球约有 17.1 亿人患有肌肉骨骼疾病 [4]。骨关节炎、类风湿性关节炎、银屑病关节炎、痛风和强直性脊柱炎等疾病会影响关节;骨质疏松症、骨质减少和相关的脆性骨折以及创伤性骨折会影响骨骼;肌肉减少症会影响肌肉,背部和颈部疼痛会影响人体的脊柱。肌肉骨骼组织损伤十分常见,尤其在运动活跃的成年人中,损伤可能因创伤事件而呈急性,也可能因过度使用或累积性创伤而呈慢性 [3]。例如,跟腱和前交叉韧带 (ACL) 断裂是运动活跃人群中最常见和最严重的损伤之一;软骨可能因创伤而受损,如果不及时治疗,可能导致骨关节炎等关节退行性疾病 [5],并最终导致需要进行全关节置换术。
3 校长,副教授,CMR 药学院,Kandlakoya-501401,海得拉巴,特伦甘纳邦,印度 摘要:血友病是最常见的严重遗传性出血性疾病。血友病 A 和 B 分别由因子 VIII 和因子 IX 蛋白的缺乏或功能障碍引起,其特点是轻微创伤后甚至自发性出血时间延长且大量出血。血友病的治疗非常昂贵,并且需要终生输注血浆凝血因子。过去几年,基因治疗取得了重大突破,现在为可能的治愈方法带来了真正的希望。人工智能有可能改变血友病基因治疗的各个层面,从载体设计到预测模型和生物标志物识别。本综述重点介绍了人工智能在精准医疗中的部分应用,包括病毒载体设计、基因编辑的预测模型以及血友病基因治疗中的深度表型分析。通过预测脱靶效应、优化递送载体设计和确定个性化治疗组合,它能够大大提高基因治疗的有效性和安全性。因此,这也将加速疾病诊断和监测的生物标志物的开发。这样,血友病基因治疗中的人工智能将彻底改变治疗框架,使其为世界各地的患者提供个性化甚至治愈性的治疗。关键词:血友病、基因治疗、病毒载体、基因编辑、深度学习和机器学习。引言人工智能 (AI) 与血友病管理的整合尚处于起步阶段。本论文回顾了人工智能带来的进步。从机械角度来看,机器人辅助手术,例如全膝关节置换术和腹腔镜前列腺切除术,已在血友病患者中取得成功。实际上,血友病中的人工智能应用包括 CRISPR/Cas9 脱靶预测、严重程度估计和血友病 A 和 B 中的因子 VIII/IX 缺乏症识别。先天性出血性疾病,如血友病 A 和血友病 B,是由凝血因子 VIII 或 IX 缺失或功能失调引起的。每 5,000 名男性新生儿中就有 1 名患有血友病 A,而每 25,000 名男性新生儿中就有 1 名患有血友病 B。临床表现取决于残留血浆因子水平。严重表型(≤1% FVIII/FIX 活性)表现为反复自发性出血和手术并发症。我们现在才刚刚开始在血友病中使用人工智能 (AI)。为了更好地理解血友病和人工智能之间的联系,本文对该主题进行了文献综述。就人工智能 (AI) 的机械组件而言,通过机器人辅助全膝关节置换术和腹腔镜前列腺切除术,血友病患者已经取得了成功的结果。1 在AI的虚拟组件方面,机器学习(ML)和深度学习(DL)在血友病领域的以下应用已显示出良好的效果,例如计算心脏破裂、开发以血友病为中心的用户中心应用程序、识别CRISPR/Cas9核酸酶脱靶以进行治疗、评估疾病的严重程度、以及识别轻度至中度血友病A和血友病B中的因子VIII和IX缺乏症,如图1所示。
髋关节置换术有效地治疗先进的骨关节炎,因此有权被称为“ 20世纪的运作”。随着人口统计的转变,仅美国每年将在2030年每年进行850 000个节肢动物。许多植入物现在具有陶瓷头,具有强度和耐磨性。尽管如此,一部分,高达0.03%的寿命可能会破裂,要求复杂的去除程序。为了解决这个问题,提出了一种无辐射,基于图像引导的外科手术技术。该方法使用陶瓷植入物材料的固有荧光,通过对普遍植入物类型的化学和光学分析证明。特别是,Biolox Delta植入物在700 nm附近表现出强烈的荧光,具有74%的光致发光量子产率。发射尾巴被识别为延伸到近红外(NIR-I)生物透明度范围,这形成了片段无标签的可视化的重要先决条件。这种红宝石样的荧光可以归因于氧化氧化铝基质内的CR,从而通过相机辅助技术可以检测到甚至具有深座的毫米大小的片段。此外,荧光显微镜还可以检测µM大小的陶瓷颗粒,从而使滑膜流体和组织学样品中的碎屑可视化。这种无标签的光学成像方法采用了易于使用的设备,并且可以无缝过渡到临床环境而没有明显的调节屏障,从而提高了陶器植入物拆卸程序的安全性,效率和微创性质。
背景:随着抗逆转录病毒疗法(ART)患者(PLWH)患者的预期寿命日益增加,慢性疾病的患病率越来越普遍,例如股骨头的抑制症(ONFH)。与更容易获得的血液相比,骨髓中的病毒感染谱和PLWH中坏死的股骨头保持不足。方法:股骨头和骨髓是从15个PLWH的髋关节置换术中收集的。对于每个股骨头,从软骨下,坏死,硬化和正常区域获得样品。HIV DNA和HIV RNA分析来评估骨髓和血液之间病毒载量和储层的差异,并在坏死性股骨头的不同区域中量化病毒感染。结果:8例患者(低于20份/ml),血液HIV RNA降至可检测的水平以下。骨髓HIV RNA的中位数为255.89份/ml。血液和骨髓中的HIV DNA为296.35和454.31拷贝/10 6细胞。坏死区域中的HIV DNA约为在硬化区域,HIV RNA约为正常区域的两倍,差异在统计学上是显着的。结论:尽管使用了ART,但骨髓中仍有大量活跃的HIV和潜在的储层。病毒转录在股骨头的坏死区域中最活跃,这可能表明HIV本身直接参与ONFH。关键字:艾滋病毒,艾滋病,骨髓,股头,水库