真核细胞核的进化起源机制仍不清楚。在几种合理的假设中,最具争议的是大型 DNA 病毒(如痘病毒)导致了真核细胞核的出现。最近的几项发现,包括在原核病毒和具有类似核的内膜的原核生物中发现类似核的结构,表明基因组 DNA 不仅在真核生物中存在区室化,在原核生物中也存在区室化。人们认为,巨型病毒的复杂病毒机制类似于真核细胞核:DNA 在病毒工厂和细胞核内复制,细胞核至少部分被膜包围,没有核糖体。此外,最近发现的棘阿米巴卡氏水母病毒的几个特征表明,祖先病毒工厂和真核细胞核之间存在进化关系。值得注意的是,Ran、DNA聚合酶和组蛋白显示了病毒和宿主之间核基因横向转移的分子化石。这些结果表明病毒在真核细胞核出现过程中具有创新性。根据这些结果,提出了一种从病毒参与的角度解释真核细胞核起源的新方案。这种新方案可能会对真核生物起源的研究产生重大影响,并激发有关病毒对真核细胞核进化贡献的进一步讨论。
原子领域中其他粒子的相互作用——却不是这样。通过量子力学和巧妙的实验设计,确实可以实现无相互作用的测量。如果珀尔修斯掌握了量子物理知识,他就能想出一种方法来“看见”美杜莎,而不需要任何光线真正照射到美杜莎身上并进入他的眼睛。他可以不看就能看。这种量子魔术为构建可在现实世界中使用的检测设备提供了许多想法。也许更有趣的是令人难以置信的哲学含义。这些应用和含义最好在思想实验的层面上理解:流线型分析包含真实实验的所有基本特征,但没有实际的复杂性。因此,作为一个思想实验,考虑一种贝壳游戏的变体,它使用两个贝壳和藏在其中一个贝壳下的一颗鹅卵石。然而,鹅卵石很特别:如果暴露在任何光线下,它就会变成尘埃。玩家尝试确定隐藏的鹅卵石的位置,但不能将其暴露在光线下或以任何方式打扰它。如果鹅卵石化为灰尘,玩家就输了。最初,这个任务似乎不可能完成,但我们很快发现,只要玩家愿意一半的时间都成功,那么一个简单的策略就是抬起他认为没有鹅卵石的贝壳。如果他猜对了,那么他就知道鹅卵石在另一个贝壳下面,即使他没有看到它。当然,用这个策略获胜只不过是碰运气猜对了。接下来,我们进一步修改,看似简化了游戏,但实际上让局限于经典物理领域的玩家不可能获胜。我们只有一个贝壳,鹅卵石可能在壳下也可能不在壳下,这是一个随机的机会。玩家的目标是判断鹅卵石是否存在,同样,不将其暴露在光线下。假设贝壳下面有一颗鹅卵石。如果玩家不看贝壳下面,那么他就不会得到任何信息。如果他看了,那么他就知道鹅卵石在那里,只是他必须把它暴露在光线下,所以只会发现一堆灰尘。玩家可以尝试调暗