背景:心脏传导系统(CCS)创建并传播产生心跳的电信号。这项研究旨在评估人类和室内室中CCS以及周围组织的胶原蛋白含量,脉管系统和神经。材料和方法:从17个成人人类尸体锻炼的心脏中收集了十个辛里氏和17个房室CCS样品。Masson Trichrome染色用于检查胶原蛋白,心肌细胞和脂肪比例。免疫组织化学,通过CD31(泛皮标记)和D2-40(淋巴内皮标记)抗体研究血管和淋巴管。一般神经密度,同时使用酪氨酸羟化酶,胆碱乙酰转移酶的副交感神经和GAP43(神经生长标记)抗体研究了交感神经。所有组件均使用Qupath软件(皇后大学,贝尔法斯特,北爱尔兰)进行量化。结果:在正弦与室内CCS中,间质胶原蛋白高两倍以上(55%比22%)。Sinoatrial CC中的脂肪含量为6.3%,心室CC中的脂肪含量为6.5%。与周围的组织相比,在辛里尔和心室CCS中,淋巴管的密度增加,在锡室与房室CCS中较低(p = .043)。SA和AV CC之间的整体脉管系统密度没有差异。与周围组织相比,CCS的整体神经支配和神经生长密度显着增加。心房与心室CC中的神经生长更高(p = .018)。心房与心室CC中的整体神经更高(p = .018)。在所有研究区域中,在Sinotrial CCS中最高密度的所研究区域中,交感神经供应均具有主导地位。结论:我们的结果为人类CCS胶原蛋白,脂肪,脉管系统和神经的独特形态提供了新的见解。对CCS解剖成分和媒介底物的作用有更深入的了解将有助于阐明心律不齐的原因,并为进一步的治疗干预提供基础。©2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
调查的目标:这项工作旨在评估紫红酮诱导的PD的实验小鼠模型中氧化锌(ZnO)纳米颗粒的神经保护作用,并研究ZnO,钴铁素铁素体纳米颗粒及其组合的治疗作用。方法:在PD小鼠的对照和实验模型中,使用ELISA评估了多巴胺,去甲肾上腺素,肾上腺素和5-羟色胺的水平。通过实时PCR测定了DOPA-二羧化酶表达水平。通过蛋白质印迹分析评估酪氨酸羟化酶(Th)的表达水平。结果:我们的数据表明,与正常情况相比,PD小鼠的多巴胺水平降低。ZnO NP在正常小鼠和PD小鼠中增加了多巴胺水平(分别为37.5%和29.5%;与未经治疗的小鼠相比,分别为37.5%和29.5%)。但是,ZnO NP在正常小鼠或PD小鼠中不会引起去甲肾上腺素和肾上腺素水平的任何变化。5-羟色胺的水平降低了64.0%,在用钴铁氧体和双Zno-钴铁素体NPs处理的PD小鼠中,51.1%的水平降低了51.1%;与未处理的小鼠相比,分别是相比。在用ZnO NP处理的正常和PD小鼠中,DOPA-二羧酸酶的mRNA水平增加。与未处理的PD小鼠相比,使用钴铁素体NP和双ZnO-Cobalt铁氧体NP时,其水平降低。与未经处理的小鼠相比,在用ZnO,钴铁素体和双ZnO-Cobalt铁氧体NP治疗的正常小鼠中观察到了0.25、0.68和0.62倍。主要结论:这项研究表明,ZnO NP可能被用作潜在的干预措施来提高多巴胺水平以帮助PD治疗。在PD小鼠中,ZnO给药导致TH水平的0.15倍降低,而与未经处理的PD小鼠相比,Cobalt铁氧体和双重ZnO-Cobalt铁氧体NP施用分别降低了0.3和0.4倍。
和核磁共振 (NMR) [7] 已经开发出来。但总的来说,这些检测方法仅限于小型动态组合文库 (DCL) 大小,使用相对大量的蛋白质 (> 10 μM) 并且操作繁琐。报道了一种鉴定蛋白酶抑制剂的方法,该方法涉及醛和亲核试剂的可逆原位反应,监测荧光报告底物水解的抑制情况。[8] 荧光偏振 (FP) 分析已与片段连接结合使用以优化蛋白质结合:通过与亲核片段的原位反应延伸荧光素标记的底物类似物肽与 C 端醛,以增强蛋白质结合亲和力。[9] 在这里,我们报告如何通过在单个孔中原位合成和筛选抑制剂 (ISISS) 来有效发现适合体内使用的人类酶抑制剂。 ISISS 方法将双正交反应与基于 FP 的靶标结合分析相结合,能够对大量片段组合进行时间无关的检测。ISISS 方法操作简单,可在 384 孔板高通量模式下进行(图 1)。我们将基于 FP 的 ISISS 策略应用于发现人类脯氨酰羟化酶 2 (PHD2) 的体内活性抑制剂,PHD2 是治疗慢性肾病 (CKD) 相关贫血的靶标。ISISS 方法采用荧光素标记探针,该探针由异硫氰酸荧光素 (FITC) 和强效 PHD2 抑制剂连接而成(探针结构如图 S2 所示),并通过 FP 分析监测低浓度人类 PHD2 (20 nM) 与竞争性配体的结合(图 S2)。 [10] PHD 催化作用对促红细胞生成素的生物合成有负面调节作用,因此 PHD 抑制剂可促进血红蛋白 (Hb) 的产生和红细胞生成。[11] PHD2 抑制剂有可能彻底改变贫血的治疗,首创的 PHD2 抑制剂罗沙司他现已获准用于临床。[12] 在这里,我们报告了 ISISS 方法如何有效地识别与罗沙司他具有相似效力的 PHD2 抑制剂,包括在体内环境中。根据 PHD2 活性位点的结构特征(图 2A)和双正交酰腙形式,我们能够识别出与罗沙司他具有相似效力的 PHD2 抑制剂。
苯丙氨酸 - 酪氨酸 - DOPA - 多巴胺途径为大脑提供多巴胺。在此过程中,酪氨酸羟化酶(Th)是羟基化酪氨酸并用四氢无生物蛋白酶(BH 4)作为辅酶生成左旋多巴(L -DOPA)的速率限制酶。在这里,我们表明口服Berberine(BBR)可以通过二氢贝雷碱(通过细菌硝酸还原酶产生的BBR降低)提供H•并促进二羟基生物蛋白酶的BH 4的产生;增加的BH 4增强了TH活性,从而加速了肠道细菌的L -DOPA的产生。口服BBR的作用类似于维生素。 由肠道细菌产生的L -DOPA通过循环进入大脑,并转化为多巴胺。 要验证由BBR效应激活的肠道对话,将粪肠球菌或粪肠球菌移植到帕金森氏病(PD)小鼠中。 细菌显着增加了脑多巴胺,并改善小鼠的PD表现;另外,与单独细菌相比,BBR与细菌的结合表现出更好的治疗作用。 此外多巴胺。 这些结果表明BBR是肠球菌中Th的激动剂,可能导致肠道中的L -DOPA产生。 此外,对28例高脂血症患者的研究证实了口服BBR通过肠道细菌增加血液/粪便L -DOPA。口服BBR的作用类似于维生素。由肠道细菌产生的L -DOPA通过循环进入大脑,并转化为多巴胺。要验证由BBR效应激活的肠道对话,将粪肠球菌或粪肠球菌移植到帕金森氏病(PD)小鼠中。细菌显着增加了脑多巴胺,并改善小鼠的PD表现;另外,与单独细菌相比,BBR与细菌的结合表现出更好的治疗作用。此外多巴胺。这些结果表明BBR是肠球菌中Th的激动剂,可能导致肠道中的L -DOPA产生。此外,对28例高脂血症患者的研究证实了口服BBR通过肠道细菌增加血液/粪便L -DOPA。因此,BBR可以通过上调肠道微生物群中L -DOPA的生物合成来改善大脑功能,从而通过类似维生素样作用来改善脑功能。
结直肠癌(CRC)是全球最常见的癌症之一,也是第二大致命癌症,每年导致超过 935 000 人死亡[1,2]。结直肠癌的发病率逐年上升,目前位居恶性肿瘤的第三位。它是中国第二大常见癌症死亡原因[3]。根据中国癌症统计的数据,预计 2022 年结直肠癌将占中国所有新发恶性肿瘤的 12.28%[4]。大约 20%-30% 的结直肠癌患者在诊断时已处于晚期,早期患者也有 25%-50% 的机会发生转移[5,6]。近年来,细胞毒性化疗和靶向药物治疗的使用导致总体生存率显著提高,但大多数转移性结直肠癌仍然无法治愈[4]。耐药和化疗毒副作用是mCRC化疗失败或停止的主要原因。一线化疗药物用于mCRC初始治疗的有效率仅为40%~60%,二线化疗药物有效率不足30%,二线化疗失败的患者化疗有效率更低,通常不足15%[7]。对于这类经二线化疗后出现癌症进展的患者,缺乏有效的治疗[8]。另外,随着化疗周期的增加,化疗的毒副作用也随之增大,大多数患者因无法耐受毒副作用而停止化疗[9]。因此,延长mCRC患者的生存期、降低复发转移率、提高生活质量已成为当前亟待解决的问题,患者必须寻求替代疗法。中草药已成为包括结直肠癌在内的癌症治疗的一种补充替代疗法,在中国被广泛接受[10,11]。研究表明,中草药可抑制结肠肿瘤形成、增殖和迁移,诱导细胞凋亡,调节结直肠癌细胞的血管生成[12-14]。此外,许多临床试验表明,中草药与化疗联合使用可降低化疗引起的毒性、增强免疫功能、改善生活质量,并保证安全性[15-18]。和众颗粒是一种中草药配方,由生姜、人参、黄芩、黄连、茯苓、吴茱萸和半夏等八种草药组成,作为经验方用于治疗转移性结直肠癌多年[19-21]。有研究表明,和种及其组分能抑制胃肠道黏膜嗜铬细胞释放5-羟色胺3及P物质,降低色氨酸羟化酶水平,下调神经激肽-1受体的表达,抑制胃液分泌和胃蛋白酶活性等;从而
肠粘膜免疫系统的基本作用是维持对腔抗原的耐受性,这是通过肠道居住的免疫细胞和由微生物组提供的两向相互作用的大量协调和多层相互作用来实现的。粘膜体液免疫反应(并且主要是分泌IgA)是主机调节分类学组成[1-7]空间组织[8-10]和微生物群的代谢功能[11-13]的主要手段。由共生微生物进行的最重要的母质功能之一是宿主胆汁酸的生物转化(BAS)[14]。BAS是宿主衍生的两亲分子,可作为乳化剂,可促进饮食脂质和脂溶性维生素的溶解和吸收[15]。bas主要使用胆固醇作为前体作为初级碱,然后将其运输并存储在胆囊中,直到后之前将其分泌到十二指肠。大约在分泌到肠道的所有BAS中的95%将在远端回忆[16,17]。在稳态条件下,逃脱这种回收过程的5%的BAS将到达结肠,在那里它们被共生肠道细菌修饰以成为次要BAS。肠道菌群通过不同的酶促反应修饰腔体BA生物化学:deconju-gation,脱氢,脱氢,脱氢,沉积和氧化还原。细菌BA生物转化的第一个限制步骤是甘氨酸或牛磺酸与BAS(deCongugation)的裂解,这是通过细菌胆汁盐羟化酶(BSH)酶进行的。BAS的细菌解偶会阻止BAS通过顶端钠BA转运蛋白(ASBT)的主动转运[18]。人类肠道微生物群的遗传研究表明,所有主要细菌门的成员都具有BSH基因,并且能够进行BA decondongation [19,20]。与脱糖性相反,在企业门的几个含量中(例如,乳酸杆菌科,梭状芽孢杆菌科,乳甲苯性乳甲苯性乳酸菌,浓度)似乎是主要负责的,用于随后的酶促反应[21,22]。此外,肠道菌群可以通过直接影响管腔中共轭BAS的平衡的能力来调节BAS中BAS的合成[23]。疏水性碱基浓度的微摩尔移位可以刺激肠上皮细胞apopto- Sis [24,25],因此BAS的肠肝循环是通过负面反馈机制运行的严格调节过程,该过程通过生理上良性的BA组成和中心含量维持生理上的良性BA组成和中心。最近,BAS被描述为信号分子,它们是核法尼X受体(FXR)和Takeda G蛋白偶联受体(TGR5)的配体[26]。
最近的研究强调了慢性缺氧在微管菌的作用,这是终末期肾衰竭的最终公共途径。高级时,微管间质损伤与周围毛细血管的丧失有关。相关的间质纤维化会损害氧扩散并供应管状细胞和间质细胞。肾小管细胞的缺氧导致凋亡或上皮间质转分化。 这又加剧了肾脏的纤维化和随后的慢性缺氧,在火车上设置了一个恶性循环,其终点为ESRD。 已经鉴定出了早期诱导微型间缺氧的许多机制。 由于血管活性物质失衡而导致的肾小球损伤和血管收缩减少了骨细胞周围毛细血管血流。 血管紧张素II不仅会收缩传出动脉,而且通过诱导氧化应激,也会阻碍氧气在管状细胞中的有效利用。 肾脏中的相对缺氧还导致肾小管细胞的代谢需求增加。 此外,肾脏贫血会阻碍氧气递送。 这些因素可能会在出现脉管系统发生重大病理变化之前会影响肾脏,并使肾脏对肾小管造成损伤。 针对慢性缺氧的治疗方法应证明有效地针对广泛的肾脏疾病有效。 当前的方式包括用促红细胞生成素的贫血改善,通过阻断肾素 - 血管紧张素系统的封闭性毛细血管血流保存以及使用抗氧化剂。肾小管细胞的缺氧导致凋亡或上皮间质转分化。这又加剧了肾脏的纤维化和随后的慢性缺氧,在火车上设置了一个恶性循环,其终点为ESRD。已经鉴定出了早期诱导微型间缺氧的许多机制。由于血管活性物质失衡而导致的肾小球损伤和血管收缩减少了骨细胞周围毛细血管血流。血管紧张素II不仅会收缩传出动脉,而且通过诱导氧化应激,也会阻碍氧气在管状细胞中的有效利用。肾脏中的相对缺氧还导致肾小管细胞的代谢需求增加。此外,肾脏贫血会阻碍氧气递送。这些因素可能会在出现脉管系统发生重大病理变化之前会影响肾脏,并使肾脏对肾小管造成损伤。针对慢性缺氧的治疗方法应证明有效地针对广泛的肾脏疾病有效。当前的方式包括用促红细胞生成素的贫血改善,通过阻断肾素 - 血管紧张素系统的封闭性毛细血管血流保存以及使用抗氧化剂。最近的研究阐明了缺氧诱导的转录机制,即脯氨酰羟化酶调节缺氧诱导因子。这给开发了针对这一最终共同途径的新型治疗方法的发展。J Am Soc Nephrol 17:17–25,2006。doi:10.1681/asn.2005070757 O
Hypoxia-inducible factor 2 α promotes protective Th2 cell responses during intestinal 1 helminth infection 2 3 Jasmine C. Labuda 1 , Tayla M. Olsen 1,2 , Sheenam Verma 1 , Samantha Kimmel 1 , Thomas H. 4 Edwards 3 , Matthew J. Dufort 3 , Oliver J. Harrison 1,4 5 6 1 Center for Fundamental Immunology, Benaroya Research美国华盛顿州西雅图研究所。7 2分子和蜂窝生物学计划,美国华盛顿州西雅图市华盛顿大学。8 3美国华盛顿州西雅图市贝纳罗亚研究所系统免疫学中心。9 4美国华盛顿州华盛顿大学华盛顿大学免疫学系。10 11通信:oharrison@benaroyaresearch.org 12 13摘要:TH2细胞必须感知并适应组织环境,以提供保护性宿主14免疫和组织修复。在这里,我们检查了促进Th2细胞15分化和功能的机制。单细胞RNA-seq 16分析来自小肠道椎板椎板的CD4 + T细胞17揭示了基因EPAS1的高表达,编码了转录因子缺氧缺氧诱导的18因子2a(HIF2α)。在体外,即使在非极化条件下,暴露于缺氧或遗传HIF2α激活也促进了Th2细胞19分化。在小鼠中,CD4 + T细胞中的HIF2α激活20在没有感染的情况下促进了肠道Th2细胞的积累,而HIF2α缺陷21受损的CD4 + T细胞介导的宿主对肠舵感感染的免疫免疫。24 25简介:肠蠕虫感染是全球最普遍的慢性感染26。我们的发现22确定了缺氧,氧调节的转录因子缺氧诱导因子2α23(HIF2α)是小肠内Th2细胞分化和功能的关键调节剂。Helminth infections are often associated with polarized “type 2” immunity, including 27 activation and accumulation of T helper 2 (Th2) cells, type-2 innate lymphoid cells (ILC2), tissue 28 basophils and eosinophils, elevated serum immunoglobulin E (IgE), alternative activation of 29 macrophages and alterations of epithelial differentiation and mucus production that统称30重塑感染的解剖部位2。免疫事件和31个组织重塑的类似级联反应引发局部组织病理学发生在过敏性疾病中,包括过敏32哮喘3。33 34指导屏障组织中Th2细胞分化的机制尚不清楚。35然而,证据支持组织微环境在建立36保护性Th2细胞分化和功能中的指导性作用,这是由染色质访问性37和/或基因表达的变化提供的,在将Th2细胞从淋巴结到本塞质体38组织4,5的TH2细胞转运后的基因表达。组织警报蛋白,包括IL-25,IL-33和TSLP是在39个屏障组织中产生的关键因素,这些因素在Helminth 40感染6,7期间共同促进2型免疫力和Th2细胞反应。在41个屏障组织中影响Th2细胞功能的组织环境中其他提示的身份仍有待鉴定。42 43缺氧诱导因子(HIF)是介导细胞的关键转录因子,对缺氧8的有机体反应4。Consisting of 3 family members, (HIF1 α , HIF2 α and HIF3 α , 45 encoded by Hif1a , Epas1 and Hif3a, respectively), HIFs are post-translationally modified in an 46 oxygen-dependent enzymatic cascade that regulates their stability, nuclear translocation, 47 binding to hypoxia-response elements (HRE) and transcription of低氧诱导基因8。48在常氧条件下,HIF蛋白通过氧气在关键的脯氨酸残基上通过氧气-49依赖性丙酰羟化酶(PHD)酶羟基氧化。通过50
抽象背景可以通过特异性靶向触发抗体依赖性细胞介导的细胞毒性(ADCC)或通过遗传工程来表达嵌合抗原受体(CARS)来增强自然杀伤(NK)细胞的抗肿瘤活性。尽管抗体或汽车靶向,但某些肿瘤仍然对NK细胞攻击具有抗性。已知ICAM-1/LFA-1相互作用对NK细胞的自然细胞毒性的重要性,但它对ERBB2(HER2)特异性抗体曲妥珠单抗和ERBB2-培养基介导的NK细胞细胞毒性抗乳腺癌细胞诱导的ADCC的影响。方法,我们使用了表达高亲和力FC受体FcγRIIIA的NK-92细胞与曲妥珠单抗或ERBB2- CAR工程NK-92细胞(NK-92/5.28.Z)以及与ERBB2-CAR-2-CAR-2-CAR-2-CARID-ICAMID CYAMIS CYMINIC CYMINID CYMINIC CYMINID-CAR-2-CAR-2-CAR-92细胞(NK-92/5.28.z)结合使用,并或替代阻断NK细胞上的LFA-1。此外,我们特别刺激了FC受体,CAR和/或LFA-1,以研究其在免疫突触时的串扰,及其对抗体靶向抗体或靶向的NK细胞中脱粒和细胞内信号的贡献。结果阻断了LFA-1或ICAM-1的不存在会在曲妥珠单抗介导的ADCC中显着降低细胞杀伤和细胞因子释放,以针对ERBB2-阳性乳腺癌细胞,但在靶向汽车的NK细胞中并非如此。用5-Aza-2'-脱氧胞苷进行预处理,诱导ICAM-1上调,并反转ADCC中的NK细胞耐药性。此外,刺激抑制性NK细胞检查点NKG2A曲妥珠单抗单独没有充分激活NK细胞,需要额外的LFA-1共同刺激,而在CAR-NK细胞中ERBB2型车的激活会诱导的有效脱粒化,而与LFA-1无关。总内反射荧光单分子成像表明,CAR-NK细胞与排除ICAM-1的肿瘤细胞形成了不规则的免疫学突触,而曲妥珠单抗形成了典型的外周上分子超分子激活簇(PSMAC)结构。从机理上讲,ICAM-1的缺失不会影响ADCC期间的细胞 - 细胞粘附,而是导致通过PYK2和ERK1/2的信号降低,这是由CAR介导的靶向本质上提供的。