水培是一个正在发展的食品生产行业,尤其是在绿叶蔬菜领域。由于绿叶蔬菜是食源性疾病的主要来源之一,水培被认为是减少病原体爆发的一种工具。虽然水培和其他受控环境农业系统消除了土壤和户外种植系统中的许多污染源,但污染的风险并未消除。先前对水培的研究表明,细菌病原体(STEC、沙门氏菌和李斯特菌)在水培系统中生长并迅速传播,而且水培农产品的细菌病原体内化率高于土壤种植的植物1-3。事实上,近几个月来,由于沙门氏菌和李斯特菌的污染,水培绿叶蔬菜已被多次召回。尽管如此,与土壤系统相比,有关这些系统的微生物学信息仍然有限。
摘要 . 过去五年来,印度尼西亚的海藻产量大幅下降了 3.55%,其中斯里布群岛地区的产量急剧下降,从 2018 年的 196 吨下降到 2022 年的 2 吨。了解支持海藻养殖的生物和环境参数,特别是微生物和浮游生物多样性,对于可持续生产至关重要。这项研究在 2023 年雨季(4 月至 5 月)和旱季(7 月至 8 月)期间在斯里布群岛的 1996 个养殖点对 Kappaphycus alvarezii (Doty) Doty ex PCSilva 进行了研究,涉及五个主要岛屿附近 12 个点的水质评估和生物采样。细菌群落的下一代测序 (NGS) 表明,Alphaproteobacteria,特别是红细菌科,在各个季节都占主导地位,而浮游动物在雨季占主导地位,浮游植物在旱季占主导地位。样本中没有有害藻类和致病细菌,表明海藻生长的环境总体上是安全的。虽然通过升高的油含量和叶绿素 a 检测到了一些人为污染,但总体水质被认为适合海藻养殖。研究结果表明,通过适当的管理来减轻污染,Kepulauan Seribu 地区仍具有可持续海藻养殖的强大潜力。关键词:宏基因组、细菌、浮游生物、Kepulauan Seribu、海藻养殖。
摘要工业大麻植物大麻是纺织品和生物复合材料应用的植物纤维的来源。收获后,植物的茎被布置在地面上,并由自然存在于土壤和茎上的微生物(细菌和真菌)定植。通过产生降解植物壁聚合物的水解酶,将纤维束结合在一起的自然水泥被去除,从而促进其解离(递减过程),这是生产高性能纤维所必需的。要研究屈曲微生物群落的时间动力学(密度水平,多样性和结构),必须从茎中提取基因组DNA的可靠方案。然而,尽管对最终结果的重要性至关重要,但对核酸提取的方法学方面的关注很少。选择了三个方案并测试了三个方案:商业套件(用于土壤的FastDNA™自旋套件),GNS-GII程序和Genosol平台的自定义程序。在土壤和两种不同的大麻茎上进行了比较分析。通过评估提取的DNA的数量和质量以及细菌和真菌种群的丰度和分类法来衡量每种方法的效率。与其他两个方案相比,Genosol方案在基因组DNA的数量和质量方面提供了有趣的产量。然而,两种提取程序(FastDNA™旋转试剂盒和Genosol方案)之间微生物多样性中没有观察到重大差异。基于这些结果,FastDNA™自旋试剂盒或Genosol程序似乎适用于研究重度过程的细菌和真菌群落。应注意的是,这项工作已经证明了评估与大麻茎中DNA恢复相关的偏见的重要性。
结果:两种物种之间的土壤特性和根部特征存在显着差异,其中有土壤水含量(SWC)和根际和散装土壤中的土壤有机碳(SOC)(p <0.05)。虽然根部渗出液的代谢物分类相似,但它们的成分变化,而萜类化合物是主要的差分代谢物。土壤微生物结构和多样性也表现出显着差异,网络中具有不同的关键物种,并且主要与氮和碳周期有关的差异功能过程。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。 HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。在根渗出物介导的根性状,土壤微生物和土壤特性之间观察到了强相关性。HA网络中发现的主要代谢产物包括糖和脂肪酸,而HP依赖于二级代谢产物,类固醇和萜类化合物。
本研究以中国科学院上海海洋大学环境科学与工程学院为研究背景,采用固相萃取、实时荧光定量PCR和宏基因组学方法进行分析。本研究的主要内容为:(1)探讨万峰湖抗生素及耐药基因的赋存特征;(2)了解沉积物中微生物群落的结构组成;(3)分析环境因素及抗生素对耐药基因分布的影响,探究抗生素及耐药基因与沉积物中微生物的共现关系。本研究结果揭示了珠江上游万峰湖抗生素及耐药基因的分布特征及沉积物微生物群落,探讨了抗生素、耐药基因与微生物之间的关系。
©2021 Elsevier Ltd.此手稿版本可根据CC-BY-NC-ND 4.0许可(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)提供。
现今随着高通量测序技术的飞速发展,微生物群落分析受到越来越多的关注。观测数据具有以下典型特征:高维、成分复杂(处于单纯形状态),甚至由于种类过于丰富而呈现尖峰性和高度偏斜性,这使得传统的相关性分析无法研究微生物种类之间的共现和共排斥关系。在本文中,我们解决了该类数据的协方差估计难题。假设基协方差矩阵位于一类公认的稀疏协方差矩阵中,我们采用文献中称为中心对数比协方差矩阵的代理矩阵,由于维数趋向于无穷大,因此它与真实的基协方差矩阵几乎无法区分。我们为中心对数比协方差矩阵构建了一个均值中位数 (MOM) 估计量,并提出了一种可适应各个条目变化的阈值处理程序。通过施加一个比文献中的亚高斯条件弱得多的有限四阶矩条件,我们推导出谱范数下的最佳收敛速度。此外,我们还为支持恢复提供了理论保证。MOM 估计量的自适应阈值处理程序易于实现,并且在存在异常值或重尾时具有稳健性。进行了彻底的模拟研究,以显示所提出的程序优于一些最先进的方法。最后,我们应用所提出的方法来分析人类肠道中的微生物组数据集。用于实现该方法的 R 脚本可在 https://github.com/heyongstat/RCEC 获得。
在CTL的生长和农业发酵阶段,相关的酶活性发生了显着变化(Banozic等,2020)。在CTLS生长过程中积累的淀粉,纤维素和果胶在农业发酵阶段逐渐降解,然后转化为CTLS的香气前体和VFC(Zhang等,2021)。在这一点上,尽管烟气仍然相对粗糙,并且还需要进一步酸化CTL的主要香气,并且需要进一步酸化,而杂物,苦味,苦味和其他不良口味,除了通过堆叠发酵来减少刺激性,以进一步富含CTL的质量并提高质量的质量(Liu F. F. F. F. F. et al 20222222222222)。堆叠发酵是雪茄生产过程中的工业发酵阶段,并且与大分子物质在生长和农业发酵过程中的快速降解相比,主要堆叠发酵是主要转化小分子物质和VFC。VFCS的含量随微生物和相关酶的功能而变化,尽管类型的变化很小,并且可以实现增加香气,减少其他气体的效果,并使烟气酸化(Liu F. F. F. et al。
在干旱地区,过度用水威胁着农业可持续性和整体生计。 必须最大程度地减少用水量解决这些问题。 日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。 将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。 与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。 因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。 但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。 这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。 调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。 我们表明,在所有采样深度上,这些效果都是相似的。 最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。在干旱地区,过度用水威胁着农业可持续性和整体生计。必须最大程度地减少用水量解决这些问题。日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。我们表明,在所有采样深度上,这些效果都是相似的。最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。这项研究的结果为棕榈根建筑和相关的真菌群落提供了新的见解,尤其是在供水危机的背景下,这推动了农业系统的适应性。
方法:在MASE项目(太空探索的火星类似物)中,我们选择了代表性的缺氧类似环境(多年冻土,盐矿,酸性湖泊和河流,硫磺弹簧),以对其微生物群落进行全面分析。我们通过基于丙嗪的扩增子和shot弹枪元基因组测序评估了完整细胞的微生物组谱,并补充了广泛的培养工作。结果:从微生物组分析中对MASE部位蓬勃发展的完整微生物群落检索到的信息,加上31种模型微生物的分离以及15个高质量基因组的15种模型微生物的分离,使我们能够观察到原理途径,与中度环境相比,在MASE位点上阐明了特定的微生物功能。微生物的特征是令人印象深刻的机制来承受物理和化学压力。我们的所有分析级别揭示了微生物群落对复杂有机物的强烈和无所不在的依赖性。此外,我们确定了一个在所有地点蓬勃发展的34个多生物群的极端耐药性世界。