摘要以高氮利用效率(NUE)的谷物作物的开发是全球农业的优先事项。除了传统的植物育种和基因工程外,植物微生物组的使用还提供了另一种改善作物nue的方法。可以深入了解与多高粱线不同的细菌群落,设计了一个现场实验,比较了足够且缺乏氮(N)下的24种多样的高粱双色线。Amplicon sequencing and untargeted gas chromatography–mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacte rial communities and root metabolite composition of sorghum.我们发现高粱和细菌的丰富性和多样性之间存在正相关。高NUE线中的较大α多样性与主要细菌分类群假单胞菌的丰度降低有关。响应低N胁迫,在根代谢产物和根际细菌群落之间检测到了多个强相关性。这表明由于低N引起的高粱微生物组的变化与宿主植物的根代谢产物有关。综上所述,我们的发现表明,根代谢产物的宿主遗传调节在定义与根高粱基因型的根相关微生物组方面发挥了作用,而高粱基因型的NUE和对低N胁迫的耐受性有所不同。
这项研究研究了Zhenjiang芳香醋(ZAV)期间季节性环境因素对微生物和风味化合物的影响。在整个发酵过程中都监测了环境因素,这跨越了多个季节。方法,例如固定相微挖掘气体色谱 - 质谱法(HS-SPME-GC-MS),高性能液相色谱(HPLC)和高通量测序,以研究这些环境因素如何影响这些环境因素影响ZAV的风味和微生物社区。发现的结果表明,秋季酿造的Zav具有最强的风味和甜味。负责ZAV风味的关键微生物包括乙酰乳杆菌乙酰氨基酚,植物足乳杆菌,Reuteri乳酸杆菌,发酵乳杆菌,乙型乳杆菌,乙酰肝杆菌巴斯多利亚斯。此外,相关分析表明,室温对微生物群落的组成以及其他关键的季节性环境因素(如总酸,pH,减少糖和湿度)产生了重大影响。这些结果为调节发酵过程中的核心微生物和环境因素提供了理论基础,从而提高了ZAV质量。
2007 年,在佛罗里达州环境保护部 (FDEP) 州土地司的资助下,佛罗里达州自然区清单 (FNAI) 开始更新《佛罗里达州自然群落指南》(指南),自 1990 年 FNAI 和佛罗里达州自然资源部(现为 FDEP)首次发布以来,该指南仅进行了轻微修改。当前更新仅包括 45 个陆地群落(23 个陆地群落和 20 个沼泽群落,以及海洋和河口类别中的潮汐沼泽和潮汐沼泽),其余群落将在以后更新,但物种名称除外。更新的目的是通过列出特征物种和区分类似群落的特征来澄清群落之间的区别,并为每个群落添加有关其范围内的变异(特别指出常见变异)、范围、自然过程、管理、示范地点和参考资料的信息。最终的 2010 年指南包含原始的海洋、河口、湖泊、河流和地下群落,以及更新的 46 个陆地群落,其中添加了 9 个新群落名称 - 冲积森林、林间空地沼泽、凯斯仙人掌荒地、凯斯潮汐岩石荒地、石灰岩露头、灌木沼泽、泥沼、高地混合林地和高地松树,并删除了 8 个原始群落名称(其名称被更改或其概念被纳入其他群落) - 沼泽、沿海岩石荒地、洪泛区森林、淡水潮汐沼泽、草原吊床、洼地、高地混合森林和高地松树林。这里提供了 1990 年指南和 2010 年指南之间的完整对照表,反之亦然,并进一步解释了所做的更改(附录 1)。
Isabel Cantera、Jean-baptiste Decotte、Tony Dejean、Jérôme Murienne、Régis Vigouroux 等人。使用群落生态学方法表征河流系统中环境 DNA 的空间信号。分子生态资源,2022 年,22 (4),第 1274-1283 页。�10.1111/1755-0998.13544�。�hal- 04060858v2�
动物中的胃肠道微生物组为操纵提供了一个有吸引力的目标,以改善动物健康和生产性能。更好地了解鸡肉肠道微生物组,以及如何使用营养干预措施来调节微生物群。大多数鸡肠道微生物组的研究都检查了肉鸡,很少有针对层微生物组的研究。这项研究的重点是研究补充曼南的富含分数(MRF)对峰值层次和峰值后层的盲肠微生物群的影响。在一项喂养试验中,在随机完整的块设计中,喂食奶酪女性的母鸡被喂食对照饮食或用MRF补充的对照饮食。cecal含量是从每次治疗的10个随机选择的鸟类中收集的,并在4个时间点进行元基因组分析(D 16、32、64和84 MRF引入)。alpha多样性分析表明,在D 16,D 32和D 64补充后,ChAO1显着较大,但与对照相比,MRF补充层的D 84在D 84时较低(P <0.005)。PCOA图表明,物种水平的细菌群落组成在每个时间点上对照和MRF补充层之间的较大差异(p <0.001)。微生物组分析表明,在补充MRF的84天之后,致病细菌单核细胞增生李斯特菌,弯曲杆菌的空肠,粪肠球菌和梭状芽胞杆菌的差异明显较低。肠道菌群的细菌多样性增加是对入侵病原体的定殖耐药性的关键决定因素之一。在这项研究中,我们观察到在育雏中补充MRF后的84天中,在84天中观察到了更大的α和β多样性,并较低的细菌病原体进行了检测。参考抗生素耐药性和粮食安全的全球挑战,通过使用天然非抗生素替代品来降低致病细菌种类,对于食物链完整性以及氟ock健康尤其重要。
摘要:这项研究的目的是研究散装剂对堆肥厨房废物的成熟和气态排放的影响。组成实验是由选定的核心细菌剂和通用细菌剂进行20天的。结果表明,核心微生物剂的添加有效地控制了典型的气味产生化合物的发射。核心和通用细菌剂的添加大幅降低了NH 3排放量94%和74%,并使H 2 S排放量降低了78%,27%。堆肥过程中核心微生物剂的施用将峰值温度升高至65℃,并且在有效的温度演化方面(连续8天> 55℃)。加入了核心微生物剂的初始值,有机物降解降低了65%,而对于其他治疗方法,减少量很小。将核心微生物剂添加到厨房废物中,产生了成熟的堆肥,其发芽指数较高(GI)为112%,而其他治疗方法并未完全成熟,GI的GI <70%。微生物分析表明,堆肥的核心微生物剂增加了魏森氏菌,Ignatzschineria和菌孢子的相对丰度。网络和冗余分析(RDA)表明,核心微生物剂增强了细菌与八个指标之间的关系(p <0.01),从而改善了堆肥过程中化合物的生物转化。总体而言,这些结果表明,仔细选择适当的接种微生物对于改善厨房废物的生物转化和营养含量堆肥至关重要。
摘要 植物—微生物共生关系无处不在,但分析扩散、宿主过滤、竞争和温度对微生物群落组成的影响却颇具挑战性。花蜜中栖息的微生物可以影响开花植物的健康和授粉,它们为解开群落组装过程提供了一个易处理的系统。我们将一个合成的酵母和细菌群落接种到 31 种植物的花蜜中,同时排除传粉者。我们监测天气,并在 24 小时后收集并培养群落。我们发现植物种类对最终的微生物丰度和群落组成有很强的影响,部分原因是植物系统发育和花蜜过氧化物含量,而不是花的形态。温度升高会降低微生物多样性,而最低温度升高会促进生长,表明温度具有复杂的生态效应。植物物种内一致的花蜜微生物群落可以促进植物或传粉者的适应。我们的工作支持宿主身份、特征和温度在微生物群落组装中的作用,并指出宿主相关微生物组内的多样性-生产力关系。
摘要研究了带有硅胶支持的上流厌氧反应器中细菌群落的演变,该反应堆不断地用纯甘油(第0-293天)和粗甘油(第294-362天)喂食。来自以前甘油降解反应堆的生物量用作接种物。用粗甘油获得了1,3-丙二醇(PDO)(PDO)(PDO)(PDO)(0.62 mol.mol-gly-Gly-1和14.7 G.l -1 .d -1)。接种物的多样性较低,乳酸杆菌(70.6%)和克雷伯氏菌/劳尔特拉(23.3%)的优势占主导地位。在用纯甘油喂养293天后,在附着的生物膜或生物量中生长的悬浮液中,两个分类单元的丰度均下降到小于10%。梭子座属和雷诺罗卡科家族的成员随后成为多数。在用粗甘油进食后的时期,梭状芽胞杆菌仍然是生物膜中的多数属。然而,它在悬浮液中部分替换为非甘油降解细菌的Eubacterium。这一事实以及生物膜中其他甘油降解属的流行率,例如磷酸胶产物和乳酸杆菌,表明附着在硅酮支撑上的细菌负责将甘油转化为1,3-PDO。因此,为了提高1,3-PDO的生产率,一种良好的方法是最大化反应堆支撑量。其他不降解甘油的属,例如厌氧菌和乙美环,以牺牲细胞衰减材料为代价。规范对应分析表明,甘油的起源是生物反应器操作期间要考虑的重要变量,用于产生1,3-PDO,而甘油加载速率却不是。
摘要:要深入了解典型温带森林生态系统中五种不同森林类型的土壤酸性多样性和组成,并探索它们与土壤养分的关系。通过高通量测序技术确定土壤酸性的多样性。土壤酸性叶酸的α多样性指数和土壤养分含量在不同的森林类型之间差异很大。β多样性和土壤酸性杆菌的组成在森林类型之间也有所不同。酸性属属,例如酸性_gp1,酸性杆菌_GP4和酸眼酸_gp17,在不同森林中起关键作用。RDA分析指出,土壤pH,可用的氮(AN),碳与氮(c/n)比,可用的磷(AP),总碳(TC)和总磷(TP)是影响不同森林类型中土壤酸性土壤的重要因素。在这项研究中,分析了温带森林生态系统中不同森林类型的土壤酸性杆菌的多样性和组成,揭示了它们与土壤物理化学特性之间的复杂关系。这些发现不仅增强了我们对土壤微生物生态学的理解,而且还为温带森林生态系统的生态保护和恢复策略提供了重要的指导。
脊椎动物肺部包含多种微生物群落,但鲜为人知的是社区组成或其对健康的后果的原因。肺微生物组组装,例如分散,协同进化和宿主开关。然而,肺微生物组的比较调查很少,特别是对于真菌成分,是mycobiome。区分真菌分类群是通才或专业共生体,潜在的病原体或偶然吸入的孢子,这是迫切的,因为有很高的新兴疾病潜力。在这里,我们提供了禽肺菌落体的第一个特征,并测试了环境,系统发育和功能性状的相对影响。我们使用了195个肺样本中的元法编码和培养,代表20个家庭中的32种鸟类。我们确定了532个真菌分类群(Zotus),其中包括许多机会病原体。这些主要由门comycota(79%)组成,其次是basidiomycota(16%)和粘膜瘤(5%)。酵母和类似酵母菌的类群(Malassezia,Filobasidium,saccharomyces,Meyerozyma和Aureobasidium)和丝状真菌(cladosporium,cladosporium,externaria,neurospora,fusarium和spergillus)很丰富。肺Mycobiomes受环境暴露的强烈影响,并通过宿主身份,性状和系统发育亲和力进一步调节。我们的结果暗示了迁移性鸟类作为机会性致病真菌的长距离传播的潜在向量。