羧甲基κ-carrageenan(CMKC),具有不同程度的取代(DSS),在粘性或粘贴溶液中被γ辐照。成功合成化学交联的水凝胶对DS,浓度和辐射剂量的依赖性。CMKC-3S水凝胶的最高凝胶分数为76%,Ds为1.58。水凝胶在水和盐水中显示出不同的肿胀程度。在两个溶剂中,肿胀行为与时间对应于二阶动力学。在15 kGy时照射20%浓度的CMKC-3s的吸水率最高为334 g水/g干凝胶。选择的水凝胶作为伤口敷料的应用,在沙质土壤中和金属吸附剂中评估。作为伤口敷料,CMKC-2S和CMKC-3S水凝胶具有相当大的拉伸强度,吸收伪细胞外流体的能力,以及具有pH/电导率的提取物,有助于促进愈合。此外,基于MTT检验,CMKC-3S水凝胶没有细胞毒性潜力。作为沙质土壤中的水位,测试样品的0.1、0.3和0.5%CMKC-3S颗粒最初保留了25.1%,32.2%和42.6%的水,而单独的沙质土壤则为19.2%。在第7天,三个沙质土壤CMKC组仍然有13.7–29.3%的水,而对照组的水只有3.85%。在批处理吸附研究中,水凝胶吸附的Cu 2+,Zn 2+,CD 2+和Pb 2+重金属在溶液中的不同容量,CD 2+是高度吸附和PB 2+,最少。CMKC-3S水凝胶显示出最高的金属摄取和吸附效率,其次是CMKC-2S,然后是CMKC-1S。CMKC-3S水凝胶,进一步测试了pH效应,在中性pH值时表现出最佳的金属摄取。
摘要 钻探油气井过程中最重要的挑战之一是处理页岩地层和随后的页岩膨胀。在本研究中,我们利用羧甲基三甲基氯化铵 (CTAC) 来抑制页岩膨胀,代表了这种特殊阳离子表面活性剂的一种新应用。我们进行了几项实验来评估 CTAC 在防止页岩膨胀方面的有效性并深入了解其潜在机制。此外,根据结果,CTAC 在低浓度下非常有效,可以与其他常见添加剂一起使用。此外,在膨润土混合物中存在 1 wt.% 的 CTAC、十六烷基三甲基溴化铵 (CTAB) 和氯化钾 (KCl) 时,接触角分别为 77°、75° 和 38°。此外,通过添加 CTAB,简单和完全钻井泥浆中的总页岩回收率分别增加了 5.53% 和 0.94%。同时,在CTAC存在下,增幅分别为12.37%和6.43%。此外,在完整钻井泥浆中加入CTAC和CTAB分别使膨胀减少了9.94%和4.2%。最后,对比研究表明,CTAC作为一种新型抑制剂的效果优于CTAB和KCl作为常规抑制剂。
摘要:上呼吸道感染(URTI)占学龄前儿童住院率高的儿童喘息发作的80%以上。大多数在URTI期间患有喘息症状的儿童通常是非原子的。由于urti引起的大多数喘息发作归因于病毒触发因素,因此一些研究表明白藜芦醇的潜在抗炎和抗病毒特性。本研究旨在确定白藜芦醇对乌尔蒂(Urtis)触发的复发性喘息的儿科非原子患者的影响。我们进行了一项前瞻性单盲研究,以评估纳入白藜芦醇和羧甲基β-葡聚糖的短期鼻溶液的有效性,在URTI发作时施用了7天,与标准的鼻腔液化相比,与0.9%的盐水溶液相比。共有19名患者进入了活跃组,将20名患者分配到安慰剂组。在两组中的总体喘息日(p <0.001),平均喘息天数(p <0.01)以及每名患者的喘息发作(p <0.001)显示出接收白藜芦醇的组显着降低,与安慰剂组相比,与医院的接入相比(p <0.001)(p <0.001)(p <0.001)和cortialoid cortialoid(p <0.001)。我们的发现似乎表明,在乌尔蒂(Urtis)继发的非原子儿童中,鼻腔白藜芦醇可能是从上空气道症状开始时有效预防或减少喘息的情况。
目的:为突破各级生物屏障,提高siRNA的递送效率,通过组氨酸、胆固醇修饰的羧甲基壳聚糖与抗EGFR抗体(CHCE)自组装,制备了一种多功能siRNA递送系统(CHCE/siRNA纳米粒)。方法:通过动态光散射和扫描电镜检测CHCE/siRNA NPs的形貌;体外通过流式细胞术和共聚焦激光扫描显微镜评估其肿瘤靶向性、细胞摄取和内体逃逸能力,证实了CHCE/siRNA NPs的基因沉默和细胞杀伤能力;体内通过IVIS成像系统检测CHCE/siRNA NPs的生物分布,并证实了NPs在裸鼠肿瘤模型中的治疗效果。结果:CHCE/siRNA NPs呈纳米球形,粒径分布窄。体外实验中,CHCE/siRNA NPs 兼具肿瘤靶向性和 pH 响应性的双重功能,能够促进细胞结合、细胞摄取和内体逃逸,可有效沉默血管内皮生长因子 A (VEGFA),引起细胞凋亡并抑制增殖。体内实验中,CHCE/siRNA NPs 可靶向肿瘤部位,敲低 VEGFA,达到更好的抗肿瘤效果。结论:成功制备了一种兼具肿瘤靶向性和 pH 响应性的新型 siRNA 递送系统,该系统可突破生物学屏障,深入肿瘤,达到更好的肿瘤治疗效果,为 siRNA 提供了一种新的理想递送平台。关键词:多功能羧甲基壳聚糖,靶向递送,内体逃逸,基因沉默,抗肿瘤治疗
使用。Otosan®鼻喷雾剂婴儿医疗装置是局部使用的鼻充血药物。它包括含有布列塔尼海水的高渗海水溶液的性能以及有机芦荟凝胶,有机橙色精油,铜葡萄糖酸铜和羧甲基β-甲基甘蓝的合并作用。Otosan®鼻喷雾剂的多动作通过深层清洁鼻腔,从而在本地起作用,从而使鼻子摆脱过多的粘液并有助于减少鼻塞。由于其精致的配方和没有血管收缩的事实,该产品特别适合母乳喂养的儿童,孕妇或妇女以及患有心脏病的人;在这些情况下,请在使用医疗设备之前始终咨询您的医生。没有推进剂气体。
阳离子聚合物是护发素和调节洗发水的重要组成部分,可轻松梳理和有助于积极的感觉体验。由于具有生态意识的消费者以及最新的监管要求,可持续性成为成分选择的关键因素,常规合成和自然衍生的聚合物通常缺乏生物降解性。自然替代方案,同时,经常无法满足消费者的绩效期望。满足了这种未满足的需求,兰伯蒂(Lamberti)接受了为高级,可持续解决方案设计的挑战。旅程始于对水胶样衍生物类别的深入研究,然后通过化学修饰对其性质进行细致的微调。这项研究最终导致了一种新型的Quaternized羧甲基罗望子(QCT):Esaflor®T。这种创新的成分符合市场绩效标准,提供现成的生物降解性,并来自可再生可再生资源。
摘要:工程纳米粒子在工业和商业中的应用正在增加。人们较少关注其对环境和废水处理系统的负面影响,这些负面影响可能会释放有害的病原体和微生物,威胁人类健康。由于其尺寸和特性,人造纳米粒子很容易进入废水系统并损害处理。本文旨在关注纳米粒子检测的局限性及其对废水处理技术的影响。纳米粒子具有用于废水处理的潜力。凭借其极高的表面积,它可以有效地去除水中的有毒金属离子、致病微生物以及有机和无机溶质。各种纳米材料,如含金属纳米粒子、碳质纳米材料、沸石和树枝状聚合物,已被证明可有效净化水。复合材料是两种或多种合成组装的材料。纳米复合材料对于环境修复至关重要,因为污染是世界上最大的问题之一,也是污水管理的关键。人口增长增加了对清洁水的需求。其中包括陶瓷、金属基聚合物、碳和铁基石墨烯。羧甲基等纳米复合材料可以以令人满意的速率吸附重金属离子和农药。这项研究发现,纳米复合材料有利于修复环境,可以在低收入国家使用。
γ-谷氨酰转肽酶 (GGT,EC 2.3.2.2) 催化谷胱甘肽及其 S-结合物的水解和转肽作用,通过谷胱甘肽代谢参与多种生理和病理过程,是一个极具潜力的药物靶点。本文报道了一种基于膦酸酯的不可逆抑制剂 2-氨基-4-{[3-(羧甲基)苯氧基](甲酰基)磷酰基}丁酸 (GGsTop) 及其类似物作为人 GGT 的机制抑制剂的评估结果。GGsTop 是一种稳定的化合物,但其对人 GGT 酶的失活速度显著快于其他膦酸酯,并且重要的是,它不抑制谷氨酰胺酰胺转移酶。构效关系、与大肠杆菌GGT的X射线晶体学分析、序列比对和人GGT的定点诱变表明,GGsTop的末端羧酸盐与人GGT活性位点残基Lys562之间存在关键的静电相互作用,从而实现强效抑制。GGsTop在浓度高达1mM时对人成纤维细胞和肝星状细胞无细胞毒性。GGsTop是一种无毒、选择性强效不可逆的GGT抑制剂,可用于各种体内和体外生化研究。
抽象羧甲基西米淀粉(CMS)水凝胶是通过将CMS溶解在浓搅拌下形成凝胶中的盐酸(HCL)溶液中的。所研究的参数是CMS百分比,酸溶液的浓度,反应时间和反应温度的影响,以确定CMSS水凝胶的最佳准备状态。在2.0m酸溶液中的CMS中的60%在室温下的反应时间为12小时是CMSS水凝胶的最佳条件。通过使用傅立叶变换红外(FT-IR),热重分析(TGA)和扫描电子显微镜(SEM)来表征水凝胶。FTIR光谱显示出一个附加的吸收带,表明在羧甲基化过程中,在淀粉分子链上取代了Ch 2 Coo -Na +基团,而CMSS水凝胶的光谱显示出一个额外的锐利吸收带,表明从HCL溶液中换成CMS中的Na中的Na在HCl溶液中。CMSS水凝胶的SEM图像显示出结构的孔,并连接到形成网络。TGA曲线表明,CMSS水凝胶的最大热分解速率高于CMS,这可能是由于CMSS水凝胶中存在交联。CMSS水凝胶在pH 7处的PBS溶液中具有很高的肿胀程度,而酸性培养基的肿胀程度低。关键字:水凝胶,羧甲基淀粉,交联,表征,肿胀