多年来,人们对 FOX-7 的衍生物进行了多次成功的尝试。5 一个有趣的例子是 FOX-7 与肼进行亲核取代反应生成 1-氨基-1-肼基-2,2-二硝基乙烯 (HFOX,1)。它是一种结构特征与 FOX-7 相似的坚固高性能爆炸中间体。由于 1 中氨基和肼官能团相邻,因此它反应性极高,或会自发分解,或极其危险。6 FOX-7 和 1 这两种化合物在常见有机溶剂中的溶解性较差。它们本质上是两性的,表现出多种互变异构体和共振结构,可以与碱或酸反应。7,8 例如,HFOX 与酸和碱反应时可以相应地形成质子化 (i) 和阴离子 (ii) 形式(图 1)。 7 这两种离子形式都是高反应性的中间体,与羰基化合物反应后可产生稳定的产物。然而,关于这些共振形式的选择性的研究有限,仅用于高性能材料的构建。9–11
从熔体中获得了 1,3-二乙酰芘的一种新同质异形体,并使用单晶 X 射线衍射、稳态紫外可见光谱和周期性密度泛函理论计算对其进行了彻底表征。实验研究涵盖的温度范围从 90 至 390 K,压力范围从大气压至 4.08 GPa。根据我们之前提出的方法,在金刚石压砧中对样品进行最佳放置,可确保单斜样品在 0.8 A ˚ 以下的数据覆盖率超过 80%。高压晶体结构的无约束 Hirshfeld 原子细化成功,并且观察到羰基氧原子的非谐波行为。与之前表征的多晶型物不同,2 AP- 的结构基于反向平行 2 AP 分子的无限 -堆叠。2 AP- 表现出压电变色和压电氟变色,它们与 -堆叠内的晶面间距离变化直接相关。弱分子间相互作用的重要性体现在 C—HO 相互作用方向的负热膨胀系数高达 55.8 (57) MK 1。
靶向药物输送系统的创建是纳米技术最新进展的结果。然而,使用药物输送系统有效地将分子靶向到特定位置需要专门的药物输送系统。由于纳米海绵可以容纳亲水性和疏水性药物,因此纳米海绵的开发已被证明是克服药物毒性、生物利用度低和药物释放可预测等问题的关键一步。纳米海绵的多孔形状使其具有独特的能力,可以捕获药物分子,同时提供释放药物的好处。纳米海绵是一种微小的海绵,可以在体内移动,与药物表面结合,并以受控和可预测的方式释放药物。通过将环糊精与羰基或二羧酸盐交联,可以创建纳米海绵(交联剂)。为了输送口服、外用和肠外给药的药物,纳米海绵技术得到了广泛的研究。疫苗、抗体、蛋白质和酶都可以通过纳米海绵有效地运输。本文重点介绍了制备过程、特性及其在药物输送系统中的可能应用。
CF/环氧树脂, 155, 174, 198, 240, 255, 330, 369, 481, 490, 552, 661 CFRP, 111, 419 GF/环氧树脂, 255, 330, 356, 473, 601 GF/酚醛树脂, 558 玻璃球/环氧树脂, 311 铁氧体/树脂, 347 凯芙拉纤维/环氧树脂, 347 铅球/环氧树脂, 311 MMC, 210, 507 SiC/Al, 507, 633 SiC/Ti 合金, 596 钢球/PMMA, 311 钢/聚合物水泥混凝土, 92 钽/SiC, 29 钨/羰基镍, 620不锈钢/钨钢,620 复合板,282 复合截面模量,565 压缩试验,680 压缩应力,678,684 置信限度,93,102 腐蚀,636 裂纹密度,46,602 正面,524,528 H 形,144,150 扩展,150,524,526 运行,526 交叉层,111,355,552 Cunningham,Mary E.,253-262 固化周期,490 曲面表面,264,275 截止频率,312,324
摘要。热处理的过程通常用于食品加工中,以改善微生物的颜色,风味,营养和安全性,同时也降低了有毒化学风险的潜力。但是,研究人员已经确定了与食品加热过程中发生的食品中Maillard反应有关的潜在风险。Maillard的反应分为三个阶段:初始阶段(例如在牛奶和UHT牛奶中),中级阶段(如啤酒和面包店中的产品)和高级阶段(如在啤酒,咖啡,咖啡和巧克力中所示)。Maillard反应受物理变量(例如温度和治疗时间)和化学变量(包括pH,水活动和物质)的影响。丙烯酰胺是在Maillard反应过程中可以形成的有毒化学风险之一。通过涉及天冬酰胺和羰基的主要途径,会导致N-甘油羟基 - 天冬酰胺的形成。此外,也可以通过氧化的丙烯醛和脂质氧化形成丙烯酰胺。本评论文章使用了在线搜索引擎,例如ScienceDirect,Google和ResearchGate作为文献研究方法。
高效的长距离能量传输对于光电和光收集设备至关重要。尽管有机分子的自组装纳米纤维表现出较长的激子扩散长度,但将这些纳米纤维排列成具有相似性质的大型有序域的薄膜仍然是一个挑战。本文展示了如何用离散长度的寡二甲基硅氧烷(o DMS)侧链对 C3 对称羰基桥接三芳胺三酰胺 (CBT) 进行功能化,从而形成完全覆盖的表面,其中排列的域最大可达 125 × 70 μ m 2,可在其中进行长距离激子传输。域内的纳米级形貌由高度有序的纳米纤维组成,纳米纤维在柔软的非晶态 o DMS 基质内具有离散的柱间距。o DMS 可防止 CBT 纤维捆绑,从而减少 CBT 柱内的缺陷数量。因此,这些柱具有高度的相干性,导致激子扩散长度为几百纳米,激子扩散率(≈ 0.05 cm 2 s − 1)与结晶四苯并菲相当。这些发现代表了通过使用 o DMS 功能化实现高度对齐的纳米纤维完全覆盖表面的下一步。
摘要:氧化还原活性有机材料已成为电化学设备中传统无机电极材料的有希望的替代品。然而,在实用锂离子电池设备中的氧化还原活性有机材料的部署受到电解质溶剂的不希望溶解度,缓慢的电荷转移和大规模传输以及处理复杂性的阻碍。在这里,我们报告了一种新的分子工程方法,以准备固有微孔度(PIMS)的氧化还原活性聚合物,该聚合物具有开放式亚纳光孔的开放网络和丰富的可访问的基于羰基的氧化还原位点,用于快速锂离子运输和存储。氧化还原活性PIM可以溶液处理成具有均匀分散的微结构的薄膜和聚合物 - 碳复合材料,同时保持不溶于电解质溶剂。溶液处理后的氧化还原活性PIM电极表明,锂离子电池的循环性能提高,没有明显的容量衰减。氧化还原活性PIM具有内在微孔度,可逆的氧化还原活性和溶液加工性的合并性能,在各种用于存储,传感器和电子应用的电化学设备中可能具有广泛的效用。
选择性。在 ADC 中,一旦抗体到达其靶标,受体的内化就会选择性地将结合物转运到细胞内部,最终在酸性溶酶体环境中代谢。2 a 例如,FDA 批准的酰腙(存在于 Mylotarg s 和 Besponsa s 中)在酸性环境中释放活性成分,但只能由羰基或肼衍生物制成,从而限制了仅向含有这些功能的药剂输送。13 双功能交联剂 N -乙氧基苄基咪唑 (NEBI) 已被用作可调节的 pH 敏感接头,并用于将茚并异喹啉药物或改良的 Doxo 靶向递送到癌组织(方案 1)。5 d ,14 在这种情况下,苯甲醛或咪唑部分仍留在释放的药物中。马来酰亚胺衍生物在水解转化为马来酸单酰胺后,具有近端羧酸盐基团,该基团支持酰胺水解,在酸性条件下形成苹果酸酐。15 尽管效率很高,但这种连接剂仅限于运输一级胺(方案 1)。1
由于Novoselov和Geim设法隔离了一层石墨烯,显示了该材料的出色特性[1],因此石墨烯研究并没有进一步停止。这无疑已成为过去二十年中研究最多的领域,不仅是石墨烯的性质,而且是该材料与其他元素结合形成基于石墨烯的化合物的多功能性[2]。与石墨烯相关材料的主要合成途径之一涉及石墨烯(GO)。在强氧化剂的帮助下,石墨氧化过程引入了氧化石墨氧化过程,引入了官能团,例如羰基,环氧化物,羟基和羧基,可能存在于边缘和/或石墨烯层的基础平面上[3]。这些组减少了层之间的相互作用,从而增加了它们之间的距离。石墨烯片之间的更大空间有助于去角质,从而形成单层或几层氧化石墨烯[4]。因此,GO是一个用功能组装饰的石墨烯层。这些功能组负责石墨烯片板的功能化及其与其他材料的相互作用[5]。进行化学/热修饰的这种多功能性改变了其特性,使其适用于最多样化的区域,例如聚合物复合材料
木质素是一种生物质衍生的有机聚合物,也是造纸工业的主要材料,是一种羰基化合物,具有奎因酮功能,仅通过提供合适的电荷密度来实现廉价和丰富的材料来存储便宜而丰富的材料。9它具有多功能的化学结构和官能团,它们可以朝着适合应用的晚期分子定制修饰。木质素已被用作工业水平生产过程中的廉价碳源。这篇评论的主要目的是强调在可访问的可用锂电池系统中使用木质素作为即兴电池材料。然而,很少有评论解释了木质纤维素生物量作为不同eess中的活性成分的应用。 10 - 15但是,我们的重点主要是与木质素在基于LI的系统中作为活性电极(阴极/阳极),粘合剂,电解质和主要碳源的电化学性能有关的最新进展。这篇评论主要将木质素作为替代品,以替代众所周知的经常使用昂贵且苛刻的电池材料。这是木质素在其功能方面的作用的细致跟进,表明对生物量衍生的木质素生物聚合物的兴趣不断发展。