与著名行业领导人的财团协助建立了财团,并与Iondrive结合获得了必要的资金。IonDrive Limited(ASX:ION)(IonDrive或公司)很高兴地宣布与RWTH Aachen University(PEM)(PEM)和PEM Motion GMBH(PEM Motion)的E-Mobility组件的生产工程主席签署了合作协议。这种合作旨在通过利用PEM在电池技术和回收方面的广泛专业知识以及Iondrive的创新性深层共晶溶剂(DES)可持续电池回收过程来推动可持续的电池回收技术。IonDrive首席执行官Ebbe Dommisse博士评论说:这项开发是澳大利亚技术公司的主要羽毛,邀请澳大利亚技术公司参加欧洲战略行业合作伙伴的财团,以建立电池回收“价值圈”。与PEM和PEM Motion合作,电池技术和回收利用的领导者极大地增强了我们在高级回收技术中浏览商业化途径的能力。通过组建一个财团,我们寻求战略性地定位汇集关键资源,专业知识和基础设施,从而加速商业可行的电池
• Lapomarda, A., et al., (2019). 基于果胶-GPTMS 的生物材料:面向组织工程应用的可持续 3D 支架生物打印。生物大分子,21 (2),319-327。 • Fortunato, GM, et al., (2019). 由水解角蛋白基生物材料制成的电纺结构,用于开发体外组织模型。生物工程和生物技术前沿,7,174。 • Lapomarda, A., et al., (2021). 果胶作为明胶基生物材料墨水的流变改性剂。材料,14(11),3109。 • Lapomarda, A., et al., (2021). 用于 3D 生物打印的果胶-明胶生物材料配方的物理化学表征。大分子生物科学,21(9),2100168。 • Pulidori, E., 等人,(2021)。一锅法:微波辅助角蛋白提取和直接电纺丝以获得角蛋白基生物塑料。国际分子科学杂志,22(17),9597。 • Pulidori, E., 等人(2022)从家禽羽毛中提取绿色角蛋白所产生的不溶性副产物作为生物复合材料填料的价值评估。热分析与量热学杂志:1-14。
你有没有想过孔雀羽毛的鲜艳蓝色或甲虫身上闪闪发光的金属几丁质?这些自然奇观就是结构色的例子——微观结构产生鲜艳持久色调的现象。受到这些奇迹的启发,日本的一个研究小组一直在探索结构色。他们早期的工作发现,用黑色素颗粒制备结构色材料模仿了孔雀羽毛的着色机制。在此基础上,该团队着手开发一种涂层材料,利用黑色素颗粒捕捉结构色的光彩,即使从不同角度观看也能产生非彩虹色。研究小组包括日本千叶大学理工学院的 Michinari Kohri 教授和 Yui Maejima 女士,他们与武田胶体技术咨询有限公司的 Shin-ichi Takeda 博士和国家材料科学研究所的 Hiroshi Fudouzi 博士合作。他们的研究成果于 2024 年 12 月 18 日发表在《大分子反应工程》上。Kohri 博士描述了他进行这项研究的动机,“多年来,我们一直在研究受自然生物启发的基于黑色素的结构色材料。我们的动机是通过开发快速创造结构色并添加防水等功能特性的方法,使这些材料更加实用。” 为了实现这一目标,该团队准备了三种不同直径的聚苯乙烯颗粒。然后,他们添加了一层聚多巴胺(改性黑色素颗粒),然后通过迈克尔加成反应添加具有疏水性的具有 18 个碳原子的烷基(十八烷基)。在该反应中,带负电荷的化学基团添加到 α,β-不饱和羰基化合物中,以引入增强防水性的疏水基团。这是在不依赖疏水性但会引起重大环境问题的氟化合物的情况下实现的。使用时域核磁共振 (TD-NMR) 方法确认了颗粒的疏水性。处理完颗粒后,它们会分散在己烷中,从而可以快速高效地应用于玻璃和三聚氰胺层压板等基材上。干燥后,涂层的接触角超过 160 度,色调单一,表面自洁,呈现出荷叶效应,水滴在材料上形成水珠并滚落,不会留下残留物。研究发现,用十八烷基涂层获得的疏水性黑色素颗粒的疏水性几乎与用氟化合物涂层的颗粒相同,而氟化合物具有高疏水性。第一作者 Maejima 女士强调了这项研究的独特发现,她指出,“我们发现,通过将粒子表面的疏水性与粒子的分级组装结构相结合,可以实现超疏水结构彩色涂层,而这一切只需几分钟即可完成。”该团队专注于创建一种简单且可扩展的方法,确保涂层可以在几分钟内完成,而无需复杂的设备或工艺。前岛女士评论了他们发现的实用性:“这项技术有可能成为下一代涂层材料,非常适合墙纸或户外表面等应用,而无需依赖会随着时间而褪色的颜料。它的简单性和效率使其非常适合工业用途。”
大自然在新加坡17:E 2024038出版日期:2024年4月24日,doi:10.26107/nis-2024-0038©新加坡国立大学生物多样性记录:Peirce Robin上层Peirce Robin的Pacific Golden Plovers W. J. ngam *&ryututa teo电子邮件:yanrobin@hotmail.com( *通讯作者),ryutateo@gmail.com推荐引用。ngam RWJ&teo R(2024)生物多样性记录:上皮尔斯水库的太平洋金色菜单。新加坡的自然,17:e2024038。doi:10.26107/nis-2024-0038受试者:太平洋黄金普洛弗,富尔瓦(Aves:charadriiforms:charadridae)。主题确定为:Robin W. J. Ngam和Yta Teo。地点,日期和时间:上海盗水库新加坡岛; 2024年2月16日;大约1100小时。栖息地:大型开放淡水湖的岩石堤,被次要森林包围,旁边是高尔夫球场。观察者:Robin W. J. Ngam。观察:四个成年太平洋黄金植物群(图1)在非繁殖羽毛中(图2)在储备金的岩石银行上观察到。当新人岛乡村俱乐部高尔夫高尔夫球时,该位置也是Macritchie Public Access Trail的新开放的上层Peirce(图3)。鸟类是从人类徒步旅行者的视野中隐藏的,这是小径景观植物的。这可能为鸟类提供了安全保障,甚至认为它们距离小径只有六米。因此,观察者能够通过植被获得鸟类的特写照片。
通过模式的网络,没有一个单一的,中心的逻辑表示,需要链接感知和行动 - 世界的表示是其所有部分表示之间的关系模式。现在,我们可以回到立场的主张(c),即认知科学是根据相互作用的模式(或模式实例)的词汇进行的,然后在某些情况下,神经科学可能会接受以神经网络来解释这些模式的特性的任务。即使认知科学本身(与AI不同)可能会放弃解释如何实施模式的责任,但它仍然必须(就像固定金属翼的柔软羽毛翼与僵硬的金属翼不同,至少是基于代表数百个同时活跃的人类大脑功能的模式。但是,由Newell,Shaw和Simon(1959)或Newell的书中发起的一般问题解决方案(GPS)传统中没有什么,它详细着眼于分布式处理,更不用说神经学数据来约束计算的不同部分可能位于大脑部分的不同部分中。重点并不是所有良好的认知科学(更不用说所有AI)都必须是认知神经科学。相反,认知科学的一般框架必须包括认知神经科学。实际上,鉴于科学知识的当前状态,任何当前的认知系统架构级模型都必须是异质的,因为某些模式可以通过详细的神经电路进行建模,有些模式可以与大脑区域有关,而少数几个详细信息是众所周知的,而另一些则代表了有关功能组成部分的基本数据,而这些杂物却无用或不可约束Neural neural neural neural neural neural neural neural neural。
摘要:通过对加利福尼亚州蒙特雷湾的概要,高分辨率观测来检查影响浮游植物生态学的物理生物学耦合。海底峡谷和架子上断裂的地形对物理生物学耦合的影响。在第一个案例研究中,在南部的架子水域中观察到底栖底型耦合,那里的浑浊羽流从底部约60 m深到一个深度约10 m的植物浮游植物层的底部。在与浮游植物层的交点处,羽流的沿羽毛尺度范围从底部附近约5 km到约1 km。原位和遥感数据支持蒙特雷峡谷对循环的影响,强迫底栖式 - 彼此耦合。在第二个案例研究中,额定区域和邻近水在北部架子的约20 km 2中迅速进行了调查。前部与直径<1 km的额叶脊/槽结构,表面光滑和额叶结构相关。叶绿素最大层的大小和垂直位置与额叶区域紧密结合。该层被等轴脊和额叶涡流分散,并集中在等轴槽中和沿涡流的外围。通过观察到的表面光滑,测得的水速度以及架子断裂的接近和方向,通过潮流与架子断裂的相互作用产生的内波的影响。展示了地形对蒙特雷湾浮游植物生态学的显着和持续影响。
1 适用于扑灭木质或布艺制品起火,不适用于扑灭电气系统或设备起火。 2 当电气系统或其他类型的系统发生火灾时(前提是火灾规模较小),可以使用防火毯,如果没有防火毯,则可使用羊毛毯或厚棉毯(绝对避免使用合成材料或羽毛材料,如羊毛和羽绒被)来抑制火势(这可以防止氧气进入火焰)。如果火特别小,也可以用金属容器(例如盖子或倒置的钢锅)将其扑灭。 3 粉末灭火器 (ABC) 适用于扑灭由形成余烬的固体物质引起的火灾(A 类火灾)、由液体物质引起的火灾(B 类火灾)和由气体物质引起的火灾(C 类火灾)。即使在带电系统的情况下,也可以使用粉末灭火器来扑灭任何物质的初生火灾。二氧化碳(CO2)灭火器适用于扑灭液体物质(B 类火灾)和气体火灾(C 类火灾);它们也可在带电电气系统的情况下使用。必须特别注意气体产生的过度冷却:这会导致人员冷灼伤并且热元件可能破裂(例如:由于表面过度冷却,电机或热金属部件可能破裂)。它们不适合扑灭 A 类火灾(形成余烬的固体物质)。由于内部压力较大,二氧化碳灭火器比装有相同灭火剂量的其他灭火器重得多。灭火器使用说明 - 将灭火器从任何支架上取下并放置在地面上; - 打开封条并取出安全别针; - 握住输送管或软管; - 另一只手握住灭火器的手柄,按下开启阀; - 先间歇性地按下控制杆,然后逐渐加大力度,将喷射流导向火焰底部; - 先扑灭距离您最近的火焰,然后再移向主火源。
简介:冰卫月可能会促进碳质软管和彗星材料的组合[1]。冰冷月亮上的碳质有机物(COM)的起源可能是原始的,它是从原始磁盘的有机库存中获得的[2],或者可能由Fischer-Tropsch-type合成的原位形成[3]。A pre-accretional origin of the organic matter found in carbonaceous chondrites (CC's) from the evolution of molecular cloud ices, followed by aqueous alteration on the parent body could explain the soluble organic matter found in CC's today [4] Organic species have been directly observed on icy satellites such as aliphatic signatures on Ceres [5], and carbonaceous organic matter (COM) has also been successfully以低密度成分的形式建模,以适应大冰卫星和泰坦的质量和惯性矩[6]。在父材料积聚后,在全球早期海洋中,硅酸盐和有机物之间的分化和相互作用导致这些体内各个层的分配。有机物可以在冰冷的月球形成期间通过变质[6]转化,其中有机前体经历了进行性石墨化。被困在岩石岩心中的COM的热解会释放挥发物和碳氢化合物,然后如冥王星所建议的那样将其捕获在气体水合物层中[7]。目前可以形成富含COM的外部岩心的热解释放的有机物[1],供应Enceladus的羽毛,并可能在全球海洋中产生有机富层[2]。创建了一个地球化学模型,以预测有机物种的形成和浓度。这项研究的目的是了解在软骨(硅酸盐富含硅酸盐)和彗星(碳富含碳)材料的水热改变过程中产生的有机物质,如果将这些有机物提取到地下海洋顶部的稀薄的不混溶层。
标准# 标准文本 8-PS1-3 收集并理解信息,以描述合成材料来自自然资源并对社会产生影响。澄清声明:重点是经过化学过程形成合成材料的自然资源。新材料的例子包括新药、食品和替代燃料。评估范围:评估仅限于定性信息。8-LS1-4 使用基于经验证据和科学推理的论点来支持对动物特征行为和特殊植物结构分别如何影响动物和植物成功繁殖的概率的解释。澄清声明:影响动物繁殖概率的行为例子包括筑巢以保护幼崽免受寒冷、放牧动物以保护幼崽免受捕食者的伤害、动物发声和五颜六色的羽毛以吸引配偶进行繁殖。影响植物繁殖概率的动物行为例子包括传播花粉或种子以及为种子发芽和生长创造条件。植物结构的例子包括吸引传播花粉的蝴蝶的鲜艳花朵、吸引传播花粉的昆虫的花蜜和气味,以及松鼠埋藏的坚果上的硬壳。评估范围:未提供。8-LS1-5 基于证据构建环境和遗传因素如何影响生物生长的科学解释。澄清声明:当地环境条件的例子包括食物、光、空间和水的可用性。遗传因素的例子包括影响生物生长的大型牛和草种。证据的例子包括干旱降低植物生长、肥料促进植物生长、不同品种的植物种子在不同条件下以不同的速度生长,以及大池塘里的鱼比小池塘里的鱼长得更大。评估范围:评估不包括遗传机制、基因调控或生化过程。8-LS2-4 构建一个由实证证据支持的论点,即生态系统的物理或生物成分的变化会影响种群。
地下水补救系统是受污染的现场清理项目的常见要素,并且可能在现场或原地起作用。的原位过程通常涉及从含水层中提取受污染的地下水,并将其转移到处理水的地上系统中,这种方法通常称为“泵和治疗”。可以通过配备泵和相互连接的管道的单口井或网络提取地下水。对提取的地下水的处理通常涉及通过活化的碳吸附,剥离,过滤,离子交换或金属沉淀来清除污染物。然后可以将经过处理的水路由以进行现场或异地有益用途,重新注射到含水层中进行存储,也可以将其排入附近的地表水。相反,原位过程通常涉及通过一个或多个井将试剂注入地下,以促进受污染的地下水中所需的生物学或化学反应。另一个共同的过程涉及构建一个或多个可渗透的反应性屏障,这些反应性屏障是含有精选的生物或化学物质的工程地下细胞,这些壁细胞在策略上可以拦截和处理污染的地下水的羽毛。其他原位过程包括热处理,空气散发和植物技术。污染地下水的补救措施也可能涉及受监测的自然衰减(MNA),这依赖于现有的原位过程来减少质量,毒性,迁移率,体积,体积或污染物的浓度。这些过程可能包括污染物的生物降解,吸附,稀释,蒸发和化学转化。mNA最适合去除污染来源,污染物浓度和污染物迁移的潜力较低,地球化学和生物学条件有利。使用原位或原位技术来补救具有受污染的地下水的地点,这取决于对该地点独特的水文条件的透彻理解。它还依赖于对地下水特征的理解,这些特征可能会在未来的气候情况下改变。在整个网站清理管道中应考虑更改,从现场评估到长期补救措施维护。