海面温度升高导致更频繁,强烈的珊瑚漂白事件,威胁到全球珊瑚礁的长期生存。海洋云亮(MCB)是一种建议的干预措施,可以在全球或区域应用于冷却海面温度并降低珊瑚漂白的风险和严重程度。该技术的有效性和后勤可行性取决于从海水喷雾剂在海面的海水喷雾操作中排放后,将海盐气溶胶的哪一部分纳入云中。在这里,我们回顾了有关MCB海盐气溶胶从海洋边界层内的点源分散的文献。我们将考虑因素集中在过程,机制和当前预测羽流的水平和垂直演化的能力上,从表面水平的产生到其顺风分散并混合到云高度。总的来说,我们发现自从MCB概念首次提出以来,已经有八项研究研究了MCB的这一方面,这对于向工程系统设计,海洋物流和评估MCB的整体潜在有效性至关重要。迄今为止,只有一项研究已经使用经验实验验证了气溶胶分散剂的建模,并且只有少数研究考虑了与水滴蒸发冷却相关的负浮力,以及由于凝结和沉积而导致的颗粒清除。将来研究的优先领域被确定为MCB羽流的遥远分散,以及对MCB气溶胶部分达到云基碱的估计。
对电子设备的小型化的追求是工业4.0的骨干之一,纳米材料是能够解决这些复杂技术挑战的设想解决方案。经过合成和处理时,纳米材料必须能够保持原始的最初设计特性,但有时,这可能会触发降解机制,从而通过破坏其初始形态或机械和电性能来损害其应用。使用等离子体,离子植入和高温在处理条件下降解纳米材料在文献中很大程度上是最新的。在此处调查并报告了单晶Cu纳米线的降解时,在暴露于具有残留活性O的血浆环境中。表明,即使在低反应性等离子体条件下,单晶Cu纳米线也可能通过蒸气 - 固体 - 固体成核和生长机制降解。
二氧化碳羽状地热 (CPG) 发电厂可利用地质储存的二氧化碳发电。本研究介绍了一种灵活二氧化碳羽状地热 (CPG-F) 设施,该设施可利用地质储存的二氧化碳提供可调度电力、储能或同时提供可调度电力和储能——提供基载电力并使用可调度储能进行需求响应。研究发现,CPG-F 设施比 CPG 发电厂可提供更多的电力,但每日发电量较低。例如,CPG-F 设施在 8 小时内(8 小时-16 小时工作周期)产生 7.2 MW e,比 CPG 发电厂提供的电力高 190%,但每日发电量从 60 MW e-h 下降了 61% 至 23 MW e-h。 CPG-F 设施专为不同持续时间的储能而设计,其资本成本比 CPG 发电厂高 70%,但比大多数为特定持续时间设计的 CPG-F 设施高出 4% 至 27%,同时产生的电力比 CPG 发电厂多 90% 至 310%。CPG-F 设施旨在从提供 100% 可调度电力转换为 100% 储能,其成本仅比仅为储能而设计的 CPG-F 设施高出 3%。
1 Laboratory of the atmosphere and cyclones (Lacy), UMR 8105 CNRS, University of Reunion, Météo-France, Saint-Denis de la Réunion, 97400, France 2 Commsenslab-Upc, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain 3 Cooperative Institute for Research in Environmental Sciences, University of科罗拉多·博尔德(Colorado Boulder),科罗拉多州博尔德(Colorado Boulder),美国40309,美国4国家海洋和大气管理化学科学实验室,博尔德,科罗拉多州,美国80305,美国5号,巴黎大学,巴黎大学克雷特尔大学大气实验室,巴黎大学,学院意大利卡塔尼亚的Osservatorio Etneo 7 Universe Sciences-Réunion(OSU-R)观测站,Saint-Denis,97400,法国,现在是:NOT:NILU,KJELLER,KJELLER,KJELLER,挪威
简介电池储能系统(BES)故障可能会演变为热失控,并随着相关的细胞破裂和脱落而发展。这具有随后的燃烧羽流燃烧点火的可能性。是否有火焰,BESS失败会散发出气体和颗粒到大气中,这些气体可能会顺风移动,并可能通过化学反应或物理过程(例如,在地面或其他表面沉积)进化。此进化也可以称为“命运和跨端口”。所有者和运营商必须实施安全缓解技术和操作方法,以减少故障风险,并执行危险评估和社区风险评估评估,以了解潜在的现场或下风影响的范围。这包括对空气羽流演化的模拟建模。1,2
作为该项目的一部分,CARB 于 2020 年与亚利桑那大学合作,并于 2021 年和 2023 年与 Carbon Mapper 合作,在加州部分地区进行羽流测绘飞行。在这些飞行中,共检测到 502 个甲烷羽流,与来自两个主要行业的 75 个不同运营商建立了 245 份联系:垃圾填埋场和石油和天然气设施。还检测到了来自其他行业的少量羽流,包括奶牛场、堆肥作业、厌氧消化器、炼油厂和热电联产厂,但这些羽流不在本报告的讨论范围内。CARB 工作人员确定了每个甲烷羽流源头的基础设施所有者,并通过 245 份独特的“事件报告”直接与垃圾填埋场和石油和天然气运营商分享了调查结果。运营商被要求通过实地调查(如有必要)确定排放的确切来源,修复排放源(如果可能),并向 CARB 报告他们的发现。运营商对这些事件报告的回应率为 94%。石油和天然气行业运营商通常会在一两天内采取行动,并在两周内对 CARB 做出回应。垃圾填埋场运营商通常会在一两周内采取行动,但许多垃圾填埋场运营商反应迟缓,直到几个月后才分享他们的发现。根据运营商的回应,40% 的事件被归类为“A 类”,这意味着运营商在没有收到 CARB 通知的情况下不知道排放情况,例如部件损坏或故障。12% 的事件报告被归类为“B 类”排放,这意味着检测到的甲烷羽流来自符合监管要求的正常运行产生的排放。27% 的事件被归类为“C 类”,这意味着检测到的羽流与短期维护或施工期间发生的排放有关。其余事件报告中的排放源是运营商在进行现场检查后未发现的(15%)或没有回应(6%)。在所有“A 类”排放情况下,运营商能够停止或修复相关部件并减轻排放源。因此,在约 40% 的已确定案例中,该技术直接支持了甲烷排放的减缓。
致谢:23团队要感谢莎拉·沃尔登(Sarah Walden),Chip Bollendonk,Alex Kelling,Julie Steinbrenner,Patrick Maguire,Victoria Lanaghan,Keith Malang,Derek Westmoreland,Derek Westmoreland和Design Center Colorado的工作人员以及Colorge和Idea Forge的支持和反馈。
摘要:电力空间推进是一项在不断增加的航天器上采用的技术。虽然其应用领域的当前重点是电信卫星和太空探索任务,但现在正在讨论一些新想法,这些想法走得更远,应用推进器羽流粒子流将动量传递给目标,例如空间碎片物体甚至小行星。在这些潜在场景中,推进器光束撞击远处的物体,随后改变它们的飞行路径。到目前为止尚未系统研究的一个方面是推进光束中的带电粒子与太空中存在的磁场的相互作用。这种相互作用可能导致粒子流偏转,从而影响瞄准策略。在本文中,介绍了与电力推进推进器羽流和磁场相互作用相关的基本考虑因素。针对这些问题,德国航空航天中心在哥廷根的电推进器高真空羽流测试设施(STG-ET)进行了实验,利用栅状离子推进器、RIT10/37 和亥姆霍兹线圈产生不同场强的磁场。可以检测到由类似地球磁场强度的磁场引起的 RIT 离子束的束偏转。
飞机充当高空排放载体,将大量放射性和化学活性物质运送到全球广大地区。这些物质引起的净全球变暖效应占全球气候变化的 3.5%,这是由于人类活动排放造成的 [ 1 ]。虽然二氧化碳 ( CO 2 ) 排放通常被认为是航空引起气候变化的主要因素,但它们只占航空净气候影响的三分之一。其余三分之二的影响归因于反应性非二氧化碳排放,主要是氮氧化物 ( NO x )、水蒸气 ( H 2 O ) 和颗粒物 ( PM )。这些排放物通过化学和微物理过程与周围空气相互作用,导致辐射活性物质的产生和消耗,从而扰乱大气的净能量平衡(例如,NO x 引起的臭氧生成、通过 H 2 O 和 PM 排放产生的凝结尾迹(凝结尾)等)。由于非 CO 2 飞机排放的反应性,气候响应因背景大气的状态(即其化学成分和气象条件)以及排放物释放的时间和年份而异。这意味着航空气候影响在时空上敏感,即在不同时间和/或地点释放的相同排放物可能导致非常不同的大气影响。飞机排放物的扩散发生在很长的距离和时间尺度上,排放物夹带在飞机排气羽流中,在其长达 12 小时的生命周期内扩散数百公里 [ 2 , 3 ]。羽流中存在的排放化学物质浓度升高会导致额外的非线性化学(气相和非均相)和微物理处理,由于固有假设排放瞬时扩散 (ID),这通常不在全球化学模型中得到考虑。
I.引言国家航空航天管理局(NASA)的游戏改变开发项目(GCD)羽流相互作用(PSI)项目[1]旨在发展代理在预测PSI行为方面的能力。这包括关注计算流体动力学(CFD)模拟中利用模型的成熟[2]。这些CFD工具的验证和验证需要一组强大的数据,该数据表征与PSI相关的各种不同的物理行为。为此,PSI项目已开展了一个新的地面测试活动,称为物理浓缩距离测试(PFGT)[3]。PFGT是作为一个实验测试床开发的,其总体目标是生成对PSI相关物理学的计算流体动力学验证所需的数据[2,4-7]。PFGT的主要数据目标