专门针对燃烧源。将从无人机收集的数据与人工模拟羽流扩散的改进方法进行比较,同时考虑羽流内的化学变化。这项新技术称为不完全搅拌反应器网络 (ISRN),结合了排放源顺风处同时凝结、混合和稀释的影响。结合使用手持式传感器从无人机收集的数据和 ISRN 估计值可以为研究人员、政策制定者和相关工业贡献者提供工具来监测和探索海上羽流颗粒扩散。ISRN 估计值可用于改进对多个指标(颗粒数、肺沉积表面积和黑碳)的颗粒浓度水平的近似,而无需
作为该项目的一部分,CARB 于 2020 年与亚利桑那大学合作,并于 2021 年和 2023 年与 Carbon Mapper 合作,在加州部分地区进行羽流测绘飞行。在这些飞行中,共检测到 502 个甲烷羽流,与来自两个主要行业的 75 个不同运营商建立了 245 份联系:垃圾填埋场和石油和天然气设施。还检测到了来自其他行业的少量羽流,包括奶牛场、堆肥作业、厌氧消化器、炼油厂和热电联产厂,但这些羽流不在本报告的讨论范围内。CARB 工作人员确定了每个甲烷羽流源头的基础设施所有者,并通过 245 份独特的“事件报告”直接与垃圾填埋场和石油和天然气运营商分享了调查结果。运营商被要求通过实地调查(如有必要)确定排放的确切来源,修复排放源(如果可能),并向 CARB 报告他们的发现。运营商对这些事件报告的回应率为 94%。石油和天然气行业运营商通常会在一两天内采取行动,并在两周内对 CARB 做出回应。垃圾填埋场运营商通常会在一两周内采取行动,但许多垃圾填埋场运营商反应迟缓,直到几个月后才分享他们的发现。根据运营商的回应,40% 的事件被归类为“A 类”,这意味着运营商在没有收到 CARB 通知的情况下不知道排放情况,例如部件损坏或故障。12% 的事件报告被归类为“B 类”排放,这意味着检测到的甲烷羽流来自符合监管要求的正常运行产生的排放。27% 的事件被归类为“C 类”,这意味着检测到的羽流与短期维护或施工期间发生的排放有关。其余事件报告中的排放源是运营商在进行现场检查后未发现的(15%)或没有回应(6%)。在所有“A 类”排放情况下,运营商能够停止或修复相关部件并减轻排放源。因此,在约 40% 的已确定案例中,该技术直接支持了甲烷排放的减缓。
大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................................1 1.1 流体建模.....................................................................................................................................................2 1.2 计算建模......................................................................................................................................................2 1.3 混合建模......................................................................................................................................................3 2. 空气污染空气动力学的里程碑....................................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模.....................................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................................1结构.................................
I.引言国家航空航天管理局(NASA)的游戏改变开发项目(GCD)羽流相互作用(PSI)项目[1]旨在发展代理在预测PSI行为方面的能力。这包括关注计算流体动力学(CFD)模拟中利用模型的成熟[2]。这些CFD工具的验证和验证需要一组强大的数据,该数据表征与PSI相关的各种不同的物理行为。为此,PSI项目已开展了一个新的地面测试活动,称为物理浓缩距离测试(PFGT)[3]。PFGT是作为一个实验测试床开发的,其总体目标是生成对PSI相关物理学的计算流体动力学验证所需的数据[2,4-7]。PFGT的主要数据目标
污染扩散的风洞和数值模拟:一种混合方法 1. 介绍.....................................................................................................................................................1 1.1 流体建模....................................................................................................................................2 1.2 计算建模....................................................................................................................................2 1.3 混合建模.......................................................................................................................................3 2. 空气污染空气动力学的里程碑.........................................................................................................4 2.1 流体建模的应用年表....................................................................................................................5 2.2 计算流体动力学的应用年表....................................................................................................7 3. 相似性和流体建模概念....................................................................................................................9 3.1 烟囱羽流建模....................................................................................................................15 3.2 与烟囱相互作用的烟囱羽流建模....................................................................................................1结构.................................................................................16 3.3 建模与自然通风................................
对监测CO2注入的积极和被动的地震:最佳实践和最近的进步Rob Kendall Don Lawton碳捕获和储存量在过去几年中急剧增长,并且预计在不久的将来预计达到指数增长以实现气候目标。确保长期遏制羽流对于这些项目的成功至关重要。在这些末端,已利用各种监测方法来监测注入储层和羽流。其中包括3D和4D地震和诱导的地震性监测等。主动3D和4D地震将需要了解基线储层条件并监视Caprock完整性和CO2羽流迁移。将需要被动地震以建立背景地震性并监测二氧化碳注入期间诱导的地震性。在本届会议上,我们邀请了有关本地和国际摘要的最佳实践,案例研究和最新进步,这些谈判是对CCS注入预测进行创新,优化或以其他方式进行的。
天花板下方的最高气温是隧道安全的重要参数。本研究分析了由自然通风隧道中双火源驱动的最大过量天花板气温的特征。进行了一系列的小型隧道火力实验,并具有不同的火灾分离距离和热量释放速率。还进行了基于同等虚拟起源的理论分析。结果表明,当两个火羽流到天花板之前合并时,仅存在一个峰值气温,而当两个火羽完全分离时,可以观察到两个峰值气温。隧道天花板以下的最高过量气温随着羽流合并区域的火灾分离距离的增加(S 当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。 此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。 本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。
在6月3日,Origin在6月2日晚上收到了EPA的电话,涉及来自Eraring Power State堆栈的可见羽流的报告。羽流的图像也发布在当地社区Facebook页面上。起源进行了调查,很明显,由于凉爽的夜空空气和相对湿度高,原因是水蒸气从排气中凝结了出来。在响应EPA的调查时,由环境保护许可证(EPL1429)调查的原程确认的排放始终在集中度范围内,并且污染控制措施有效地运行。EPA建议他们对Origin对此事的审查和回应感到满意。
Elaine Petro 教授 康奈尔大学 分子离子束和束表面相互作用的多尺度建模 电喷雾离子源是卫星推进、生化分析和各种表面处理行业领域的使能技术。这些应用推动了对扩展离子束的物理和粒子碰撞的化学的更深入了解。电喷雾离子羽流对最先进的等离子体建模技术提出了挑战,因为关键过程发生的长度和时间尺度范围很广(即纳米级发射点和厘米级操作体积)。伴随着这些空间梯度的是离子和中性群体中的大密度和速度梯度。此外,电喷雾羽流是具有非麦克斯韦分布的非中性等离子体。我们介绍了最先进的分子离子羽流动力学和化学数值模型,这些模型对于探索设计变量、了解操作条件和提高性能必不可少。除了卫星推进中的应用外,我们还将讨论在其他相关领域利用这些离子源的机会。