随着碳捕获和存储(CCS)行业开发并允许将CO 2注入地下,因此对满足EPA和加利福尼亚空气资源委员会(CARB)要求的监测解决方案的需求将增加。这些要求将包括法规报告,说明监视数据证明CO 2没有影响环境,并且在存储储层中CO 2羽流的分布已经按照建模所预测的。寻求许可证的公司将需要具有确定的监视解决方案,以提供数据以发出有关CO 2迁移和不合格的早期警告。
例如,如果推进系统或电气组件需要液体冷却或射频应用中的复杂匹配网络,例如,我们也提供解决方案 - 与收集器的间接测量。而不是推进器,CTB是用安装在其前部的钛收集器进行操作的。推进器的等离子体羽流及其非电荷颗粒对收集器的影响,以间接测量推力。以这种方式,我们利用CTB的高分辨率,而不会干扰推进系统的电气和热接口。我们使用400 W级霍尔效应推进器证明了这种新型的非侵入性测量方法[3]。
图3.1示意图说明了脉冲激光消融事件的关键元素。(a)激光辐射的初始吸收(由长箭头表示),熔化和蒸发开始(阴影区域表示融化的材料,短箭头表示固体 - 液态界面的运动)。(b)融化前端传播到固体,蒸发持续,激光 - 泵相互作用开始变得很重要。(c)通过羽流和血浆形成吸收入射激光辐射。(d)融化前向后退,导致最终重新固定化。
当阳极和阴极之间的电压为正时,电流会流过阀门。要使阀门换向电流,必须有正电位(电压),并且晶闸管必须具有触发脉冲。在相反方向上,即当阳极和阴极之间的电位为负时,触发脉冲不起作用。当阳极和阴极之间的电压变为负时,阀门中的电流结束。可以通过推迟触发来延迟电流开始流过阀门或从一个阀门换向另一个阀门的时刻。这种方法允许改变整流器输出电压的平均值。触发脉冲是通过使用电子控制装置同步网络而产生的。这些脉冲可以从它们的“自然触发”点(即两相电压相交的点)移位。触发脉冲移位的方法称为相位控制。
4.7.6 电解电容器是一种特殊情况,其功率因数比其他类型的电容器高出几倍,并且由于“泄漏”电流会导致显著的自热。这种自热会随着时间推移而增加,并可能累积导致完全失效,因此降额尤为重要。非电解电容器可以降额至最大额定电压的 10%,尽管这在物理上很少可行;然而,这对于电解电容器来说并不适用,因为需要最低电压来建立和维持这些类型的极化,因此在这些低水平下可能会出现更高的故障率。固体钽类型的主要降额参数是“浪涌电压”,而其他电解类型的主要降额参数是“纹波电流”。这些电容器不得在低于最低规定电压的情况下运行;它们应该降额,但仍符合制造商的最低要求。
以下页面列出了会议上要发表的所有摘要。它们按流分组,并按它们在完整时间表中出现的日期/时间顺序列出。请记住,有些流会分为多天。请注意,此顺序可能会更改。为了帮助代表选择相关且易于理解的论文,每位提交的作者都被问到三个问题。问题及其答案范围如下:您的演讲性质是什么?• 非常实用 • 实用 • 实践与理论相结合 • 理论 • 非常理论化 您的演讲是否需要对该主题领域的先验知识?• 无 • 一点 • 一些 • 相当多 • 仅限主题专家 您的演讲是否易于理解且与从业者相关?• 完全不 • 有点 • 相关 • 非常 • 高度 这些问题的三个答案列在摘要之后。
图2:大众护卫技术的硬件组件。Sciex 7500+系统的Q0区域中的添加t杆电极积极去除污染离子(紫色符号),从而导致输入仪器的样品羽流(红色和绿色符号)。T杆电极下游的离子光学元件的视觉比较显示出对基质污染的影响较小,尽管在源窗帘板上沉积了明显的残留物(左上),当时与Sciex 7500系统上的相同组件相比,没有此保护,如右下所示。
通过2D材料的远程外观远处为研究和应用打开了新的机会,克服了经典外观的某些局限性,并允许创建独立层。然而,将石墨烯作为金属氧化物远程外观的2D中间剂具有挑战性,尤其是当通过脉冲激光沉积(PLD)进行时。石墨烯层可以很容易地在通常施加的高氧气压力下氧化,并且血浆羽流的高度动力学颗粒的影响会导致严重的损害。在这项研究中,解决了这两个方面:氩气被作为惰性背景气体引入,以避免氧化并减少血浆物种对石墨烯的动力学影响。激光斑点尺寸被最小化以控制等离子体的羽流和颗粒通量。作为模型系统,钛酸锶(Sto)是在石墨烯缓冲的STO单晶上生长的准同性恋。拉曼光谱法以评估石墨烯层的2 d,g和d带指纹,并评估沉积后层中层的缺陷结构。我们的结果证明,通过降低激光斑点大小和使用高氩增压提供了对生长动力学的控制,这提供了一种关键策略,以保存PLD期间缺陷密度低的石墨烯,同时允许结构相干氧化物层的一层生长。该策略可能会概括为许多复杂氧化物的PLD远程外延,为使用广泛可访问的PLD工艺将2D材料与复杂氧化物集成开辟了道路。
测量纳米级表面力的难点在于,要知道悬臂尖端在给定偏转下对样品的压力有多大。这需要知道悬臂的弹簧常数——它在力的作用下弯曲的程度。NPL 的解决方案是使用参考弹簧,可以将 AFM 的悬臂与它进行比较。直径为十分之一毫米的电容器具有下部固定板和上部板,上部板的作用类似于承载小重量的小弹簧。施加到其中一个板上的电流会导致这对板相对于固定板上下移动。通过测量板之间的泄漏电流并使用光学干涉仪监测位移,可以计算出弹簧常数,而无需了解电容器几何形状的细节。这将使 NPL 能够开发一项新服务,在泰丁顿提供光学校准,并使该技术在场外可用于校准 AFM 悬臂。