A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要:发光二极管 (LED) 因其高效的发光效果而越来越多地应用于各种微电子设备。LED 的小型化及其在重量限制内的紧凑型设备集成导致产生过多的热量,而对热量的低效管理可能导致整个系统故障。被动和/或主动散热器用于将热量从系统散发到环境中以提高性能。本研究利用 ANSYS 设计建模器和瞬态热条件来设计和模拟 LED 系统。建模器通过利用有限元法 (FEM) 技术来执行其功能。本研究考虑的 LED 系统由芯片、热界面材料和圆柱形散热器组成。研究中使用的圆柱形散热器 (CHS) 翅片的厚度在 2 毫米到 6 毫米之间,同时确保散热器的质量不超过 100 克。 LED 芯片的输入功率在 4.55 W 和 25.75 W 之间,符合一些原始设备制造商 (OEM) 的要求。进行了网格依赖性研究,以确保结果与实际获得的结果一致。模拟结果表明,额定功率不会影响 CHS 的热阻。此外,热阻随 CHS 翅片厚度的增加而增加。发现散热器的效率随圆柱翅片厚度的增加而增加,计算和模拟热效率之间的精度范围为 84.33% 至 98.80%。显然,如本研究所示,6 毫米厚度的 CHS 翅片比其他 CHS 翅片更高效。
传统散热器只是金属片的形状,依靠放置位置和周围空气从放大器中吸收热量。ICTunnel™ 更为复杂,其作用类似于调节体温的人类下丘脑。ICTunnel™ 采用铝粘合翅片散热器,这种散热器用于高功率医疗、激光和测试设备。它利用低热质量的原理,因此加热速度快,但冷却速度也快。在其相对较小的尺寸内有翅片,提供近 31 平方英尺的表面积。其操作的关键在于翅片的间距——尽可能靠近彼此以最大化隧道内的表面积,但不要太近以免彼此加热。ICTunnel™ 使用无噪音风扇以及压力和温度传感器来维持放大器的目标温度。
3 A - 208/3/60、L - 230/3/60、H - 460/3/60、C - 575/3/60、D - 200/3/50、E - 400/3/50、F - 380/3/60、S - 220/230/1/60、V - 其他 4 A - 风冷、C - 远程冷凝器、D - 冷凝机组、H-热回收、R - 热泵 5 A - 钎焊 SS、B - 钎焊 SMO、C- S&T 铜、D - S&T 铜镍、O - 其他远程、R-MS 远程、V - 其他、N-无 6 A - 铜管铝翅片、B - 铜管铜翅片、C- 微通道、V - 其他 7 A - 无、B - 青铜辉光、H - Heresite、E - 电翅片、S -标准,V - 其他 8 E-ECM 风扇,H - 高静态,L - 单风扇,S - 标准,V - 其他 9 A - 钎焊 SS,B - 钎焊 SMO,E - 双壁钎焊,N - 无,V - 其他 10 R-410A、R-134a、407c
具有高计算性能的 CPU 的发热问题一直是一个非常严重的问题,会降低其性能。为了确保 CPU 发挥最大潜能,必须将其温度保持在 80°C 以下。由散热器和风扇组成的强制对流冷却器被认为是满足 CPU 工作温度要求以确保其最大性能的最有效方法。使用计算流体动力学 (CFD) 数值方法和拓扑优化(使用 ANSYS Mechanical 和 ANSYS Fluent)开发了一款 CPU 冷却器的散热器设计,该设计搭配了气流速度为 80 立方英尺/分钟 (CFM) 的风扇,适用于在 25°C 环境温度下工作时最大发热量为 380 瓦的 CPU。对各种翅片轮廓、翅片排列、翅片数量和散热器材料进行了比较分析。将比较分析的最佳结果结合起来,提出了一种能够将 CPU 温度保持在 80°C 以下的基本设计,这是确保最大计算性能的要求。确定采用弧形布置配置的带覆盖矩形板翅片的 30 片散热器来提供最大的冷却性能。在材料方面,碳化硅的最低 CPU 温度为 78°C,其次是铜,为 84°C。碳化硅散热器成功满足了最大 CPU 性能的要求。铜散热器不太可能导致 CPU 故障,但它不符合最大 CPU 性能的条件。此外,然后使用拓扑优化优化此基础设计以降低材料成本,结果材料成本降低了 13%,而冷却性能仅降低了 0.32%。在未来的研究中,可以通过将风扇设计和各种 CPU 负载条件纳入设计参数来改进冷却器的整体设计。
配置 • 标称长度:254 毫米 / 10 英寸、508 毫米 / 20 英寸、762 毫米 / 30 英寸和 1016 毫米 / 40 英寸 • 直径:70 毫米 / 2.75 英寸 • O 形圈尺寸 / 端盖:代码 3:222 双 O 形圈 / 平端 代码 8:222 双 O 形圈 / 翅片端 代码 7:226 双 O 形圈卡口锁 / 翅片端 MR 代码 3:222 双 O 形圈 / 平端,设计用于改装代码 0 元件
摘要:本文重点研究了带有矩形实体翅片的组合式混合微通道散热器的数值优化。轴向长度和体积固定,外部结构可以变化。模拟是在微通道散热器的基本单元上进行的。优化的目的是找到内部和外部配置中的最佳几何排列,以使微通道散热器中的峰值温度最小化。假设微电子电路板设备在单元底壁上散发 250 W/cm 2 的高密度均匀热通量。计算流体动力学代码用于离散化流体域并求解一组控制方程。讨论了水力直径、外部结构形状和流体速度对峰值温度和全局热阻的影响。雷诺数范围为 400 至 500 的冷却剂或水以强制对流层流的形式通过计算域的入口引入,以去除矩形块微通道底部的热量。结果表明,当流体速度在微散热器轴向长度上从 9.8 m/s 增加到 12.3 m/s 时,从组合散热器底部移除的热量更多。结果表明,在带翅片的组合微通道中,泵功率增加了 37.1%,而在无翅片微散热器中增加了 27.2%。研究结果与公开文献中关于具有圆形流道的传统微散热器的记录相符,趋势一致。关键词:微通道结构、配置、组合微通道和微翅片 [2022 年 11 月 14 日收到;2023 年 4 月 4 日修订;2023 年 4 月 14 日接受] 印刷 ISSN:0189-9546 | 在线 ISSN:2437-2110
• 制冷剂 R410A; • 全封闭涡旋压缩机; • 高效翅片盘管蒸发器,带铜管和铝翅片,安装在储水箱内; • 带镀锌钢(型号015-020)或压铸铝/塑料新月形叶片(型号031-802)的轴流风扇; • 安装在冷却器一侧的风冷冷凝器(铜管/铝翅片)。空气过滤器标准型号031; • 储水箱(设计压力 87 psig),配有 P3 泵、注水/排水阀、压力表; • 入口和出口连接之间的内部液压旁路; • 具有水电导率功能的电子液位传感器; • 高低制冷剂压力开关; • 制冷剂压力表(型号031-802); • 参数微处理器控制 IC208CX; • 防护等级:IP54(型号031-802)或 IP44(型号015-020); • 相位监视器,防止相位丢失和相位反转; • 压缩机曲轴箱加热器。主要优点
过热是一种严重影响电子设备可靠性的故障模式。所有电子设备,包括驱动牵引电机的三相逆变器,都会产生热量。需要通过冷却来控制散热,以防止过热。可以通过增加冷却或减少散热来避免过热。三相逆变器的散热是由金属氧化物半导体场效应晶体管 (MOSFET) 的内阻、开关损耗和其他因素引起的。三相逆变器的冷却可以使用水冷却剂或空气冷却剂。冷却系统基于产生的热量。三相逆变器的冷却可以使用空气冷却剂,并增加散热器的表面积。散热器使用铝材料,通常称为针状翅片。市场上有各种铝。我们根据 MOSFET 的内阻、开关损耗和其他因素计算了发热量。我们使用热像仪通过实验验证了模拟结果。因此,我们可以找到三相逆变器冷却系统的最佳数量、尺寸和铝翅片类型。