摘要:薄壁结构因其在航空航天工程中用作轻型部件而备受关注。通过增材制造 (AM) 制造这些部件通常会产生不希望的翘曲,这是因为制造过程中会产生热应力,并且部件的结构刚度会降低。本研究的目的是分析激光粉末床熔合 (LPBF) 制造的几个薄壁部件的变形。进行实验以研究由 LPBF 制造的薄壁结构在几个开放和封闭形状中对不同设计参数(例如壁厚和部件高度)的翘曲敏感性。使用 3D 扫描仪测量平面外位移方面的残余变形。此外,首先校准内部有限元软件,然后使用它来增强原始设计,以尽量减少 LPBF 打印过程引起的翘曲。结果表明,开放的几何形状比封闭的几何形状更容易翘曲,并且垂直加强筋可以通过增加刚度来减轻部件翘曲。
摘要:本文利用有限元法(FEM)将PoP(Package on Package)用PCB分成单元和基板进行翘曲分析,分析层厚度对翘曲的影响,并利用田口法计算SN(信噪比)。分析结果显示,在单元PCB中,电路层对翘曲的贡献很大,其中外层的贡献尤其大。另一方面,基板PCB虽然电路层对翘曲的影响较大,但相对于单元PCB来说相对较低,阻焊剂的影响反而较大。因此,同时考虑单元PCB和基板PCB,PoP用PCB的逐层结构设计时,宜使外层和内层电路层较厚,顶层阻焊剂较薄,底层阻焊剂厚度在5μm~25μm之间。
光学 MEMS 器件对于激光雷达和 AR 汽车应用越来越重要。准确预测和补偿封装翘曲对于保持精确的光学对准和长期可靠性至关重要。团队必须开发一个预测模型来模拟动态热分布期间附着在 PCB 基板上的芯片的翘曲/变形。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
阴影莫尔条纹仅限于低分辨率相机。该技术依赖于 Ronchi 光栅上的线条与投射到样品上的阴影之间产生的干涉图案。如果使用分辨率更高的相机,Ronchi 线条将会被分辨,从而防止形成干涉图案。另一方面,投影莫尔条纹并不局限于低分辨率相机,因为它不依赖于干涉图案。因此,相机分辨率不受限制;当今的标准投影莫尔条纹系统使用 5 百万像素相机,视野小至 75 x 75 毫米。相反,阴影莫尔条纹系统可用的最高分辨率相机为 1.4 百万像素,视野为 200 x 200 毫米,有效数据密度为同类投影莫尔条纹的 1/25。
最重要的优势是减少组件和底物的翘曲。通过使用此焊接过程,可以集成低成本的塑料,可以使用组件和层压材料,并随着相关的财务和环境利益而降低能耗。
羧肽酶制剂用作蛋白质键的蛋白质水解的加工辅助,在蛋白质,酵母和调味料的制造和/或加工,烘焙产品的制造以及酿造中。通常,羧肽酶将蛋白质降解为较短的蛋白质/肽和游离氨基酸。
最近已经确定,可以通过二维迪拉克材料的表面声波(SAW)来产生非线性谷电流。到目前为止,锯谷电流已归因于翘曲的费米表面或浆果相的影响。在这里,我们证明倾斜机制也可以导致非线性山谷大厅电流(VHC),而将托管锯放在带有倾斜的狄拉克锥体上的材料中,则将其放置在压电基底物上。发现非线性VHC对倾斜相对于锯的方向表现出Sinθ的依赖性。此外,这种倾斜的非线性声学VHC在放松时间上显示出与浆果相位或三角翘曲的贡献的独立性。值得注意的是,单次应变石墨烯中倾斜机理的非线性声学VHC的大小是两个阶比MOS 2中报道的级数大,源自浆果相的影响和扭曲效应。