随着当今电子产品的广泛应用,单粒子效应 (SEE) 已成为一个重大问题,不仅对于航空航天和军事等关键应用,而且对于汽车行业和医疗器械也是如此,因为可靠性始终是重中之重。这种担忧在包含电磁 (EM) 和电离辐射的环境中尤为明显,这些辐射与物质的相互作用可能会改变存储元件的状态,从而降低系统可靠性。技术规模的缩小增加了带电粒子撞击或由于传导 EM 干扰导致的电源总线波动影响多个单元的可能性;因此,导致多单元翻转 (MCU)。单纠错 - 双纠错 (SEC-DED) 代码是为存储系统提供可靠性的最常用技术之一。但是,SEC-DED 代码的标准实现不再适合提供信息可靠性,因为它们无法令人满意地处理每个编码字的大量位翻转,即 MCU 发生。在此背景下,本文提出了扩展矩阵区域选择代码 (eMRSC),这是 MRSC 的改进版本,它将之前发布的原始 16 位代码扩展为 32 个数据位的新 MRSC 版本。此外,还提出了一种新的数据矩阵区域方案,以减少生成的冗余位数。将提出的代码与众所周知的代码进行了比较,在所有实验中都表现出色。综合分析表明,提出的代码不仅可靠,而且实施成本低(即面积、编码/解码延迟和功率开销低)。
硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
大气和海洋中的翻转环流将能量从热带地区输送到高纬度地区,从而调节地球的气候。过去 40 年来,翻转的年际变化主要由两种耦合的大气-海洋模式决定。第一种与热带辐合带的经向运动有关,第二种与厄尔尼诺现象有关。这两种模式都对热带印度洋-太平洋的海平面变化有很大的影响。跨赤道能量输送的年际变化主要由第一种模式决定,印度洋-太平洋的变化比大西洋或大气中的变化更大。我们的研究结果表明,海洋能量输送在决定热带地区降水模式方面发挥着重要作用,印度洋-太平洋作为气候调节器发挥着关键作用。
你可以用这种方式和孩子们谈论他们的大脑。用你的手作为大脑,谈论大脑的“感觉”部分和“思考”部分。这可以帮助他们在感觉快要发火时告诉你。这有助于他们开始控制自己的情绪,因为第一步是让他们注意到自己的情绪何时变得过于强烈,然后才能谈论它。
这些线和电缆限制了动力头右舷相对于船的向前运动。由于所有线和电缆将动力头的右舷拉向右舷船尾,支柱(螺旋桨连接处)继续在动力头上方旋转,并开始向鲈鱼船的乘客区倾斜。在鲈鱼船上,碰撞的剩余能量继续将螺旋桨向前摆动到乘客座椅顶部颈部支撑区域。(见图 63)此场景代表图 73 右上角的紫色区域。
电子设备会整合多种材料,不可避免地包含尖锐的特征,例如接口和角落。当设备受到热载荷和机械载荷的约束时,角落会产生巨大的应力,并且是易于启动故障的脆弱部位。本文分析了拐角处的压力场。拐角处的应力是两种奇异领域模式的线性叠加,其中一种模式比另一种模式更为单数。这两种模式的幅度由两个不同维度的应力强度因子表示。为了确定应力强度因子,我们分析了在两个载荷条件下的平流芯片结构:底物的拉伸和底物的弯曲。我们表明,在产生奇异应力领域时,平流芯片软件包的热载荷等效于底物的拉伸。我们进一步表明,较不奇异的模式可能在更单数的模式下占上风,以进行某些拉伸弯曲组合。两种压力场模式的相对显着性也随材料而变化,底物厚度比。2012 Elsevier Ltd.保留所有权利。
