我要感谢我的导师:Markus Wilde 博士、Tiauw Go 博士和 James Brenner 博士,感谢他们在我在佛罗里达理工学院的整个学术生涯中给予我的耐心、指导和支持。如果没有他们的专业知识,这篇论文就不可能完成。我要特别感谢 Wilde 博士,感谢他从大三设计到大四设计一直指导这个项目,并将其变成一个论文项目。这个项目给了我一个成长为工程师的绝佳机会。我还要感谢我的矩阵主管 Jose Nunez 博士,感谢他给一个刚毕业的工程研究生一个机会,并给了我在 NASA KSC 工作的机会。特别感谢我的 NASA 导师:Mike DuPuis 和 Michael Johansen,感谢他们的耐心以及他们在建模和控制方面的丰富知识。当然,我要向 NASA KSC 飞行技术部门的所有人表示感谢。最后,我要感谢我的朋友 James (Jimmy) Byrnes、Andrew Czap、Juliette Bido 和 Charles (Joe) Berry 在本论文的整个过程中给予的支持和投入。我很自豪地说我和他们是同一届的。
A). ................................................................................................................................................................ 63
目前,有翼 eVTOL 无人机的控制方法主要将飞行器视为固定翼飞机,并在起飞和降落时增加垂直推力。这些方法提供了良好的远程飞行控制,但未能考虑飞行器跟踪复杂轨迹的完整动态。我们提出了一种轨迹跟踪控制器,用于有翼 eVTOL 无人机在悬停、固定翼和部分过渡飞行场景中的完整动态。我们表明,在低速到中速飞行中,可以使用各种俯仰角实现轨迹跟踪。在这些条件下,飞行器的俯仰是一个自由变量,我们使用它来最小化飞行器所需的推力,从而降低能耗。我们使用几何姿态控制器和空速相关控制分配方案,在各种空速、飞行路径角和攻角下操作飞行器。我们假设采用标准空气动力学模型,为所提出的控制方案的稳定性提供理论保证,并展示模拟结果,结果显示平均跟踪误差为 20 厘米,平均计算率为 800 Hz,与使用多旋翼控制器进行低速飞行相比,跟踪误差减少了 85%。
摘要。构建了一种基于自然交互行为手势的微型旋翼飞行器控制方法。为了实现通过手势控制微型旋翼飞行器的飞行姿态,通过Leap Motion控制器获取手掌平放姿态数据,通过坐标系变换和姿态角变换将数据转换为不同坐标系之间的旋翼飞行器姿态控制命令,并通过无线传输模块与微型旋翼飞行器进行通信,搭建了微型旋翼飞行器控制系统,实现了对旋翼飞行器的上升、悬停、降落、俯仰等飞行动作的控制。在实际实验中,通过不同的手势实现了对微型旋翼飞行器的飞行姿态控制。通过手势控制微型旋翼飞行器更符合自然交互的特点,是人机交互的一种延伸。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
这个词最初仅指鸟类的前肢,但后来扩展到包括昆虫的翅膀(见昆虫翅膀)、蝙蝠、翼龙和飞机。该术语还适用于赛车中用来产生下压力的倒置机翼。机翼的空气动力学质量用升阻比来表示。机翼在给定速度和迎角下产生的升力可以比阻力大 1-2 个数量级。这意味着可以施加明显较小的推力来推动机翼在空中飞行,以获得指定的升力。固定翼飞机,通常称为飞机、飞机或简称飞机,是一种能够利用向前运动飞行的飞机,当机翼在空中移动时会产生升力。飞机包括喷气发动机和螺旋桨驱动的车辆,它们通过推力向前推进,以及无动力飞机(如滑翔机),它们使用热气流或暖气袋来获得升力。固定翼飞机不同于扑翼机,扑翼机的升力由扑翼产生,而旋翼机的机翼则围绕固定桅杆旋转。在英国和英联邦的大部分地区,“飞机”一词
越南战争给参战人员带来了诸多挑战。美国正在进行“有限战争”,仅限于在该国正式宣战的军事行动。美国不愿使用核武器,而核武器曾是二战后与苏联冷战期间军事创新的基准。现代武器是为应对新核时代的战争而制造的,这让美国毫无准备在越南进行常规作战。当时快速、现代化的喷气式战斗机并不适合在该国茂密的丛林中作战,也不适合参与对抗越共游击战所需的反叛乱行动。1 因此,美国空军创新性地设计了一种解决方案,即 AC-47。
由Baidu Apollo自动驾驶打开平台和国王Long IOV大数据平台授权,Apolong可以独立完成一系列驾驶表演,例如退出停车位,汽车跟随,避免障碍,转过身,停车和停车等等。此外,在驾驶过程中,Apolong可以积极收集并报告其状况数据。在云中完成了程序算法的优化后,OTA升级用于在车辆端更新程序,从而实现了自主驾驶能力的升级。
风湿病学 适应症/给药途径:甲基强的松龙用于治疗需要立即进行免疫抑制的严重炎症(风湿性/自身免疫性)疾病。甲基强的松龙通过静脉输注给药,剂量为 500 毫克 - 1 克。给药频率和持续时间取决于适应症。大剂量应在至少 30 分钟内给药。有关静脉给药的信息,请参阅成人和儿科注射剂指南 入院前检查:禁忌症包括:• 活动性消化性溃疡 • 活动性感染(尿路感染(UTI)、皮肤溃疡等) • 未控制的心力衰竭 • 既往类固醇精神病 • 未控制的糖尿病 • 基线观察:血压(BP)、脉搏、血氧饱和度(O 2 sats)、呼吸
