除了机械性能之外,超细粒材料的焊接对于结构使用也很重要。如果将融合焊接应用于超纤维砂岩材料,则很容易发生晶粒生长,并且强度降低。另一方面,摩擦搅拌焊接(FSW)可以抑制晶粒的生长,因为在FSW期间输入了较低的热量。8–12)因此,与融合焊接相比,FSW应该是一种更好的焊接金属的焊接方法。fsw主要用于铝合金,因为高熔化温度材料(例如钢)很难FSW。但是,钢是最常用的结构材料。这项研究的目的是阐明FSW在SPD制造的超纤维颗粒钢中的机械性能和微观结构的变化。还研究了具有中间尺寸的退火钢,还研究了超纤维和常规晶粒尺寸之间的中间大小,以阐明初始晶粒尺寸对FSW接头机械性能的影响。
$ evwudfw 2 *urzwk lq wkh xvdjh ri khwhurjhqrxv lqwhlq和fklsohwv edvlq lq lq lqdqfhg lqdqfhg iru iru iru iru iru。 ohdglqj和olnh $,dqg +3&lv和iru jigh 1月份fkls vl] hv wkdw h [fhg] h [srvuh ilhog 6lpxowdqhrxhrxhrxvo \ wkhvh及其和这个and this ululqr plpdooohu olqhzlgwkwk frqhfwlqv lq lq wkhlu uhglvwlrq od \ huv wr phw wwhw wwis,2 ghqvlw \ and edqglgwk和anyshophudqfhqwv,q wklv sdshu ghprqvwudwh和iru这是olqhv olqhv和iLhog vilwfk erxqgdu \ whvwv what what and lpsdfw ri lpsdfw ri。 whf vwfulfdo uhvlvwdqfh ru ohdndjhqw fxuhqw:vkrz wkdw word and lv yldeow wruw wruw ilqs ilqs ilood isisis isisis isisisisisisisisisionary isisisisisionary iruju odujh odujh odujh DUHD SDFNDJHV
摘要:对抗多药革兰氏阴性细菌的新抗生素仍然存在至关重要的需求,这是一种继续影响死亡率的主要全球威胁。脂蛋白信号肽酶II是革兰氏阴性细菌的脂蛋白生物合成途径中必不可少的酶,使其成为发现抗菌药物发现的有吸引力的靶标。尽管已经鉴定出了LSPA的天然抑制剂,例如环状双肽球霉素,稳定性和生产困难限制了它们在临床环境中的使用。我们利用计算设计生成球霉素的稳定的新循环肽类似物。只需要合成和测试12种肽,以产生有效的抑制剂,避免准备大型图书馆和筛选运动。在针对Eskape-E病原体的微稀释测定中,最有效的类似物比球霉素表现出比球霉素相比或更好的抗菌活性。这项工作将计算设计作为对抗抗生素耐药性的一般策略。
通过引入新兴的准可观测物,在呈指数级的时间内保护定期驱动(FLOQUET)多体阶段中起着至关重要的作用,而此类准保存的操作员的最终命运可以信号热化温度。为了阐明多体浮雕系统中预构层的特性,我们在这里系统地分析可观察到的无限温度相关性。我们从数值上表明,自相关的后期行为明确地区分了准论可观察到的无保守的可观察结果,从而使一个人可以挑出一组线性独立的准论可观察物。通过研究两种浮标自旋模型,我们确定了准保存定律的两个不同机制。首先,当驾驶频率较大时,我们在数值上验证了能量准式使用,因此系统动力学大致由静态的prethermal hamiltonian描述。更有趣的是,在适度的驾驶频率下,如果Floquet驱动器包含较大的全局旋转,则仍然可以观察到另一个准观测。我们从理论上展示了如何计算可观察到的可观察到并提供数值验证。在系统地识别所有测序可观察到的情况下,我们可以使用从固态核磁共振系统中的数值模拟和实验中获得的自相关性,最终研究其行为。
摘要:初期的铁电特性已经成为一种有吸引力的功能材料,因为它们的潜力是为外来的铁电行为而设计的,因此具有巨大的希望,可以扩大铁电家族。然而,到目前为止,他们的人工设计的铁电性远远远远没有与经典的铁电抗衡。在这项研究中,我们通过制定超细纳米域工程策略来应对这一挑战。通过将这种方法应用于基于SRTIO 3的膜的代表性初期铁电膜,我们实现了前所未有的强大铁电性,不仅超过了先前的初期铁电磁记录,而且还可以与经典的铁电极相媲美。,薄膜的不分极化可达到17.0μccm-2,超高的居里温度为973 K.原子尺度研究阐明了这种强大的高密度超细性纳米域在跨越3-10个单位细胞中这种强大的高密度超细性纳米域中这种强大的铁电性的起源。将实验结果与理论评估相结合,我们揭示了潜在的机制,在这种机制中,有意稀释的外国FE元素可以很好地产生更深的Landau能量,并促进了极化的短期排序。我们开发的策略显着简化了非常规铁电的设计,为探索新的和上级铁电材料提供了多功能途径。
3D人姿势估计(3D HPE)任务使用2D图像或视频来预测3D空间中的人类关节坐标。尽管最新的基于深度学习的方法取得了进步,但它们主要忽略了可访问的文本和自然可行的人类知识的能力,而错过了有价值的隐性监督,以指导3D HPE任务。此外,以前的努力经常从整个人体的角度研究这项任务,从而忽略了隐藏在不同身体部位的细粒度指导。为此,我们基于3D HPE的扩散模型(名为FinePose)提出了一个新的细粒及时驱动的DeNoiser。它由三个核心块组成,增强了扩散模型的反向过程:(1)通过耦合辅助辅助文本和可学习的提示以模拟隐式指南的耦合知识,并通过耦合的辅助辅助文本和自然可行的零件知识,可以通过耦合的辅助辅助文本和自然可行的零件知识来构建精细的部分零件感知的提示。(2)Fine-
糖尿病(DM)是一种全身代谢疾病,具有高死亡率和发病率。细胞外囊泡(EV)已成为一种新型的信号分子,生物标志物和治疗剂。EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of b -cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it ' s also involved in pathological changes including autoimmune response, insulin resistance and b -cell failure associated with DM.此外,EV可以作为生物标志物和治疗剂,分别反映了胰岛的状态并提高功能和生存能力。在这篇综述中,我们提供了电动汽车的概述,讨论了在生理和糖尿病条件下的EVS介导的胰岛的细胞间和跨组织串扰,并总结了电动汽车在DM诊断和处理中的新兴应用。对胰岛介导的EVS介导的胰岛间和实体间交流的更好理解将扩大和丰富我们对生理稳态维持以及DM的开发,诊断和治疗的了解。
摘要。- 目的:人类与其自身的共生,共生和致病细菌的生态群落紧密地发展。在肠道微型群体之后,口腔的生物群是最大,最多样化的。它的重要性不仅反映在局部和全身性疾病中,而且在怀孕中也反映出它似乎会影响胎盘微生物组。材料和方法:这是对PubMed发表的有关梭杆菌核细菌及其对系统性和口腔健康的影响的文章的文献综述,Ad-Perse妊娠结局,口味感知及其对口腔鼻粘膜免疫的干扰。结果:在维持微生物的体内平衡的过程中,菌杆菌是口腔的机会性牙周病原体,在舌头生物膜的桥梁微生物中起着至关重要的作用,在维持味觉中的物种之间的平衡以及在Oral-Nasal-Nasal Mucsal mucsal mucsosal nununi-nuni-nuni-nuni-nuni-nuni-nuni-nuni-nuni-nuni-nuni-nuni-nunimii既是舌头的微生物,又起着至关重要的作用。它也参与了风味感知及其在生命第一天儿童口腔微生物组中的检测,这可能是可能的生理作用。然而,营养不良可以通过局部和全身性结构确定其致病性,包括呼吸道感染的发病机理。结论:评估其可能与SARS-COV-2的可能相关性以及对口腔菌群的后果,既促进可能的广泛的预防措施,都有利于所有受试者,通过为患者而促进特定的患者,因此可以通过特定的患者来促进所有受试者,因此,特定于善于促进,因此,特定于善于良性,因此,超过了,但要促进善于良性,但要予以促进。口腔营养不良。
纳米颗粒有望用于药物输送应用,并具有多种临床批准的产品。但是,在实体瘤中获得高纳米颗粒的积累仍然具有挑战性。在这里我们表明,肿瘤细胞衍生的小细胞外囊泡(SEV)将纳米颗粒递送到肿瘤,揭示了基于纳米颗粒的肿瘤疗法的另一个障碍。肿瘤细胞在肿瘤微环境中分泌大量的SEV,然后结合进入肿瘤组织的纳米颗粒并将其传递到肝库普弗细胞中以降解。敲低Rab27a是一种控制SEV分泌的基因,可降低SEV水平并改善肿瘤组织中纳米颗粒的积累。与Rab27a在脂质纳米颗粒中共同包裹的抑制肿瘤和炎性蛋白质的信使RNA的治疗功效大大提高。一起,我们的结果表明,肿瘤细胞衍生的SEV是针对纳米颗粒肿瘤递送的防御系统,并且该系统可能是改善基于纳米颗粒的肿瘤疗法的潜在靶标。
发表在预印本服务器bioRxiv 上 的论文尚未经过专家同行评审。预 计下个月,该公司将在美国基因和细 胞治疗学会年会上提交这篇论文。 与此同时,OpenCRISPR-1 或其变体 在多种生物体(包括植物、小鼠和人 类)中是否都能发挥作用还有待证 明。此外,技术的伦理和安全问题也 需要考虑。但令人兴奋的是,这些突 破性成果为生成式AI 开辟了一条新 途径,将对医学和健康领域产生广泛 影响,有望从根本上改变人们的基因 蓝图。