鉴于数据量的越来越多,有一个显着的研究重点是硬件,可提供低功耗的高计算性能。值得注意的是,神经形态计算,尤其是在利用基于CMO的硬件时,已经表现出了有希望的研究成果。此外,越来越强调新兴突触设备(例如非挥发性记忆(NVM)),目的是实现增强的能量和面积效率。在这种情况下,我们设计了一个硬件系统,该硬件系统采用了1T1R突触的一种新兴突触。Memristor的操作特性取决于其与晶体管的配置,特别是它是位于晶体管的源(MOS)还是排水口(MOS)。尽管其重要性,但基于Memristor的操作电压的1T1R配置的确定仍然不足以在现有研究中探索。为了实现无缝阵列的扩展,至关重要的是要确保单位单元格适当设计以从初始阶段可靠地操作。因此,对这种关系进行了详细研究,并提出了相应的设计规则。香料模型。使用此模型,确定最佳晶体管选择并随后通过仿真验证。为了证明神经形态计算的学习能力,实现了SNN推理加速器。此实现利用了一个基于在此过程中开发的验证的1T1R模型构建的1T1R数组。使用降低的MNIST数据集评估了精度。结果证明了受大脑功能启发的神经网络操作成功地在高精度而没有错误的硬件中实现。此外,在DNN研究中通常使用的传统ADC和DAC被DPI和LIF神经元取代,从而实现了更紧凑的设计。通过利用DPI电路的低通滤波器效应来进一步稳定该设计,从而有效地降低了噪声。
摘要。多层光转换(MPLC)提供了自适应光学器件的替代方法,用于将湍流腐败的自由空间光束耦合到单模光纤或波导中。最近发布的测试结果表明,这种转换设备比自适应光学系统具有可比性或更好的性能。为了更好地了解设备特性,进行了模拟,以量化不同湍流强度和Hermite数量的功率损失 - 转换过程中使用的高斯模式。特定的病例研究是由美国陆军研究实验室开发的原型自由空间激光通信系统。拟议的仿真和统计结果报告了。还讨论了MPLC后梁功率组合器的分析。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.oe.61.11.116104]
o典型的住宅车道590.06(2张)o人行行590.30 o临时侵蚀控制措施 - 淤泥790.03(2张纸)部分 - 刚性路面590.12 o公用事力沟渠铺路区 - 柔性路面590.13 o非摊销区域的雨水污水沟区290.21 o铺好的区域290.20 o雨水污水沟沟290.20 o
图5虚线框表示可以重复的单个Y-CY电路层。门Y代表一个Pauli-Y门:(a)和(b)代表两种Y-CY模型。唯一的区别是(a)包含从最后一个量子到第一个量子的受控y门。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 10 月 16 日发布。;https://doi.org/10.1101/2022.10.16.512417 doi:bioRxiv 预印本
摘要 提出了一种节能的抗单粒子翻转(SEU)脉冲触发器设计。双模块冗余设计充分利用了脉冲触发器结构简洁的优点,避免了脉冲触发器功耗大的缺点。采用时钟门控方案降低功耗。静态配置和避免竞争机制实现了功耗、速度和抗单粒子翻转能力的平衡。通过SEU截面评估了SEU耐受性,发现其显著低于传统D触发器。采用55nm CMOS工艺设计了触发器,并进行了性能评估。所提设计实现了最低功耗,甚至低于传统D触发器。虽然牺牲了速度,但在加固设计中实现了最低的功率延迟积。所提设计为速度不敏感和功率受限的应用提供了解决方案。 关键词:单粒子翻转,抗辐射,节能,触发器 分类:集成电路
2。任何数量的溢出(历史或新的)或任何直接影响或威胁STL敏感受体的来源。STL上的敏感受体包括地下水,不断流动或大量的水道,湖泊,污水坑,污水坑,Playa湖,春季,饮用水源或湿地;或任何定期占用的结构,包括学校,日托,教堂,诊所或居住;或任何受到威胁,濒危或敏感的野生动植物或植物栖息地的栖息地;或洞穴或其他关键喀斯特特征;或敏感的土壤。必须在发现的一(1)个工作日内直接影响或威胁敏感受体。