在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
doi:https://doi.org/10.2298/SOS2001001F UDK: 546.271;622.785;676.056.73 超耐火过渡金属二硼化物陶瓷的致密化 WG Fahrenholtz 1*)、GE Hilmas 1、Ruixing Li 2 1 密苏里科技大学,密苏里州罗拉 2 北京航空航天大学,北京,中国 摘要:回顾了过渡金属二硼化物的致密化行为,重点介绍了 ZrB 2 和 HfB 2 。这些化合物被认为是超高温陶瓷,因为它们的熔点高于 3000°C。过渡金属二硼化物的共价键很强,导致熔点极高,自扩散系数低,因此很难对其进行致密化。此外,粉末颗粒表面的氧化物杂质会促进颗粒粗化,从而进一步抑制致密化。20 世纪 90 年代之前的研究主要采用热压进行致密化。这些报告揭示了致密化机制,并确定有效致密化需要氧杂质含量低于 0.5 wt%。后续研究采用了先进的烧结方法,如放电等离子烧结和反应热压,以生产出接近全密度和更高金属纯度的材料。还需要进一步研究以确定基本的致密化机制并进一步改善过渡金属二硼化物的高温性能。关键词:过渡金属二硼化物;致密化;烧结;热压。1. 简介过渡金属二硼化物 (TMB2) 作为用于极端环境的材料已被研究多年。 1-7 多种 TMB2 被视为超高温陶瓷 (UHTC),因为它们的熔点超过 3000°C,其中包括 TiB 2 、ZrB 2 、HfB 2 和 TaB 2。其他 TMB2,例如 OsB 2 和 ReB 2,作为新型超硬材料备受关注。8-10 TMB2 拥有不同寻常的性能组合,例如金属般的热导率和电导率以及陶瓷般的硬度和弹性模量,这是由共价键、金属键和离子键特性的复杂组合产生的。11-13 由于其性能,TMB2 被提议用于极端温度、热通量、辐射水平、应变速率或化学反应性,这些都超出了现有材料的能力。通常提到的 TMB2 的一些潜在应用包括高超音速航空航天飞行器、火箭发动机、超燃冲压发动机、轻型装甲、高速切削工具、熔融金属接触应用的耐火材料、核聚变反应堆的等离子体材料以及先进核裂变反应堆的燃料形式。5,14-22 TMB2 具有极高的熔化温度和硬度值,而同样的特性也使 TMB2 难以致密化。陶瓷材料的致密化可以通过多种方法实现。许多商用陶瓷都是通过无压烧结粉末加工方法制造的部件生产的。23-25有些陶瓷很难通过无压烧结致密化。
OpenModelica 中的模拟结果表明,内部温度可以根据 ISO-834 标准进行调节。测试对象显示与提供的热流的相互作用,但必须开发更复杂的模型才能确定其承受火灾场景的能力。当将模拟与 RISE 设施进行的物理耐火性测试提供的实际数据进行比较时,开发的模型显示出与物理系统相似的特性。为了解决 PLC 中的问题,提出了两个建议。要么将代码缩小到模型未模拟的系统存在的状态,要么手动检查代码并在所需信号上设置静态值。
1 Isiaka Olajide Odewale * 、2 Ebere Monica Ameh、1 Victor Tyonenge Dhave Amaakaven、1 Felix Uga Idu、4 Collins Chinecherem Aluma、5 Babatunde Joseph David、1 Oluwakayode。博鲁瓦吉。 Abe 和 3 Dele Kehinde Ogunkunle 1 尼日利亚埃邦伊州阿菲克波阿卡努伊比亚姆联邦理工学院 Unwana 陶瓷与玻璃技术系 2 尼日利亚埃努古州埃努古州立科技大学冶金与材料工程系 3 尼日利亚伊莫州奥韦里联邦理工学院 Nekede 机械工程系 4 尼日利亚伊费伊勒国家空间研究与机构发展部 5 尼日利亚翁多州奥沃成就者大学地质系 文章历史 收稿日期:2020-04-30 修订日期:2020-06-19 接受日期:2020-07-21 通讯作者:Isiaka Olajide Odewale 尼日利亚埃邦伊州阿菲克波阿卡努伊比亚姆联邦理工学院 Unwana 陶瓷与玻璃技术系 电子邮件:easyceramicglass@gmail.com
描述 Z-Blok 耐火纤维模块是重量轻的块状绝缘衬里,可直接连接到工业炉和窑壳上。Z-Blok 模块旨在简化和加快炉衬安装,同时提供多种显著的运行优势。Z-Blok 耐火纤维模块由三个基本组件组成: 绝缘部分,由一块折叠成手风琴形状的连续 Morgan Thermal Ceramics 耐火纤维材料组成:Cerablanket、Cerachem 或 Cerachrome Blanket。 不锈钢加固和安装硬件,由位于折叠内的梁组成,通过突出部连接到 Z-Blok 模块冷面上的通道。该通道设计为在连接到炉壳的不锈钢夹子上自由滑动。 压缩带将块限制在 305 x 305 毫米的尺寸内。以拼花图案连接到炉壳后,压缩约束被移除,耐火纤维膨胀。这样可以形成一个紧密、无缝隙的绝缘炉衬,所有金属部件由于其位置靠近冷面而与高温隔离。 优点 Z-Blok 炉为炉用户和建造者提供了许多优点: 安装快捷 高效的连接设计 无缝隙衬里 可立即投入使用 重量轻 低热量存储 抗热冲击 抗机械冲击 弹性
1. 确保 MORCEM 2 水泥要涂抹的表面干燥,无任何灰尘或固体颗粒。 2. 将 MORCEM MCM3 放入合适的塑料容器中。 3. 在要接合的表面上刷一层 MCM3。这将加速 MORCEM 2 水泥的化学凝固。 4 将 MCM2 粉末与剩余的液体 MCM3 混合。使用装有离心涡轮叶轮的电动搅拌器(转速为 1000 转/分钟,以获得 MCM2 和 MCM3 的良好混合物)。 5. MORCEM 2 水泥现已准备就绪。立即使用水泥。 6. 混合物准备好后,MORCEM 2 水泥的冷凝就开始了。混合后 10 分钟内使用效果最佳。 7. 保持水泥干燥且无振动 24 小时,以确保最大强度和性能。 8. MORCEM 2 水泥无需干燥或预热即可使用。
三种不同直径和材质的导管配置(3 英寸钢、3 英寸铝和 1-1/2 英寸钢)和两个通用管钢支撑构件(一个 2 英寸和一个 4 英寸),每个包覆的标称厚度为 3/8 英寸或 5/8 英寸Thermo-LagO 330-1 和本文所述的各种升级均根据田纳西河谷管理局测试计划 RD 328886 进行评估,该评估主要基于美国保险商实验室公司 (UL) 主题 1724“电路保护系统防火测试调查大纲”的要求,第 2 期,日期为 1991 年 8 月,由 TVA 关于防火测试的立场解释标准(见附录 B)。仅发现 1-1/2 英寸导管配置符合这些文件对 60 分钟耐火期的要求。2 英寸和 4 英寸管钢支撑构件均支持使用 18 英寸规则。