数据表代码 US: 5-14-1011 产品描述 Kaowool Pumpables 是水基、柔韧、类似油灰的材料,由高温陶瓷纤维、有机聚合物、无机粘合剂和其他专有成分组成。它们已预混合,可使用 HS-100 挤压泵或类似泵从直边 5 加仑桶中直接安装。Kaowool Pumpables 可用于对烤箱、熔炉、锅炉和工艺设备中任何损坏的备用绝缘材料进行热修复或冷修复,以及对现有耐火材料因收缩而产生的任何裂缝或缝隙进行热面修复。Kaowool Pumpables 干燥后形成坚硬的刚性块,具有良好的绝缘性能、良好的强度和抗震性。 Kaowool Pumpable - 标准级可泵送材料,应用温度高达 2000°F (1093°C) Kaowool Pumpable XTP 更具流动性的可泵送材料,应用温度高达 2000°F (1093°C) Kaowool Pumpable HT 高温级材料,应用温度高达 2500°F (1371°C) Kaowool Pumpable HS 非常坚固耐磨的耐火绝缘材料,应用温度高达 2800°F (1538°C)
描述 Z-Blok 耐火纤维模块是重量轻的块状绝缘衬里,可直接连接到工业炉和窑壳上。Z-Blok 模块旨在简化和加快炉衬安装,同时提供多种显著的运行优势。Z-Blok 耐火纤维模块由三个基本组件组成: 绝缘部分,由一块折叠成手风琴形状的连续 Morgan Thermal Ceramics 耐火纤维材料组成:Cerablanket、Cerachem 或 Cerachrome Blanket。 不锈钢加固和安装硬件,由位于折叠内的梁组成,通过突出部连接到 Z-Blok 模块冷面上的通道。该通道设计为在连接到炉壳的不锈钢夹子上自由滑动。 压缩带将块限制在 305 x 305 毫米的尺寸内。以拼花图案连接到炉壳后,压缩约束被移除,耐火纤维膨胀。这样可以形成一个紧密、无缝隙的绝缘炉衬,所有金属部件由于其位置靠近冷面而与高温隔离。 优点 Z-Blok 炉为炉用户和建造者提供了许多优点: 安装快捷 高效的连接设计 无缝隙衬里 可立即投入使用 重量轻 低热量存储 抗热冲击 抗机械冲击 弹性
跨木材的生态区是西方大平原大草原与东部的东部统一森林之间的边界。在整个20世纪,俄克拉荷马州的跨木森林对定居和管理进行了变化。20世纪之前,美洲原住民在跨木材中常用着火。20世纪由于欧洲裔定居者对火灾的恐惧,迎来了大规模的灭火努力和减少火力的使用。在景观上没有火灾,这是一种称为中型化的过程,从而使耐受的树木 - 在黑暗,茂密的森林中生长的树木 - 建立并最终使在充满阳光下生长的树木越来越多,并且更容易耐火。在跨木材中,这是由于缺乏火灾,其他干扰或其他使森林开放的管理实践,并导致橡木后(Quercus stellata)和二十一点橡树(Q. Marilandica)被其他树木胜过。主要竞争对手是东部Redcedar(Juniperus Virginiana),这是一棵本地树,历史上仅限于岩石露头和其他无法遇到火灾的地区。东部雷达达(Eastern Redcedar)已扩散到跨木材森林和开放的牧场,在那里迅速胜过其他本地树木和草。
不安的腿综合征(RLS)是一种常见的疾病。人口患病率为1.5%至2.7%,其中一个更严重的RLS的患者每周出现2次或更多次症状,并至少造成中度痛苦。对初级保健医生熟悉疾病及其管理很重要。自从我们以前的修订算法于2013年发布以来,RLS的管理情况发生了很多变化。该更新的算法是由科学和医疗顾问委员会成员根据科学证据和专家意见撰写的。使用PubMed进行了文献搜索,以识别2012年至2020年RLS上的所有文章。在以下标题下考虑RLS的管理:一般考虑;间歇性RLS;慢性持续RLS;耐火RLS;特殊情况;以及替代性,调查和潜在的未来疗法。非药物方法,包括精神警报活动,避免可能加剧RLS的物质或药物以及口服和静脉内补充铁。选择了alpha 2 -delta配体作为慢性持续RLS的第一线治疗,并用多巴胺激动剂作为二线选择。我们讨论了可用的药物,确定使用的因素及其不良影响。我们定义了难治性RLS并描述了管理方法,包括组合疗法和使用高功能的OPI-OID。讨论了怀孕和儿童期RLS的治疗。
10.3仪表应符合保护程度IP 51的程度,以防止灰尘,水分和害虫的吸收。10.4仪表应提供透明的扩展端子盖(ETBC)。扩展的端子盖应具有顶部/侧铰链排列,以使其始终保持与仪表的关联。10.5仪表外壳,端子块和ETBC应由牢不可破的,高级,耐火,不易燃料,聚碳酸酯或同等高级和优质的工程塑料制成。端子块应具有终端孔,应具有足够尺寸的最小8.0毫米(直径)以容纳导体,按照第13779- 1999年的IS:6.2和6.4的要求满足要求。10.6将导体固定到端子块的方式应确保足够耐用的接触,以免松动或过热的风险。螺钉连接传输接触力和螺钉固定,在仪表寿命期间可能会松动和拧紧几次,以至于使与任何其他金属零件接触而产生的腐蚀风险被最小化。电连接应如此设计,以至于接触压力不是通过绝缘材料传播的。端子和末端螺钉应由镀金的MS /镍镀铜制成,以提供更好的电导率。清除率和蠕变距离应符合IS 13779:1999的相关条款/CBIP技术报告编号325。
摘要是元素周期表中的特殊元素,氟气体具有2.87 V与F-的最高标准电极电位,而氟原子具有最大的电负性。从著名特性中受益,氟在锂离子电池(LIB)和钠离子电池(SIB)的开发中起着重要作用。在阴极材料中,高电负性渲染增强了过渡金属氟键的离子特征,并且在电解质中的工作电位相应高;氟化电解质具有良好的抗氧化能力和耐火能力,可以显着提高电池的热安全性。在电极 - 电解质界面上,富含氟的无机成分(例如LIF和NAF)对于在阳极上形成坚固且稳定的固体电解质界面至关重要。尽管在氟阴极,电解质和接口方面取得了显着的进步,但仍然缺乏对氟化物在LIBS和SIBS中的功能的全面了解。因此,本综述简要概述了基于氟的电极,电解质和接口的最新进展,并突出了组成,特性和功能之间的相关性,以揭示Libs和Sibs中的氟化学。本综述将为氟主导的高性能电极材料,功能化电解质和合并界面的有理设计和针对性调节提供指导。
非小细胞肺癌的特征是预后的特征很大程度上是由于诊断和顽强的耐药性。因此,鉴定癌细胞对现有治疗的敏感性的新分子决定因素对于制定新有效的组合治疗策略尤为重要。microRNA(miRNA)是一类小型非编码RNA,已被确定为各种细胞过程的主调节剂,这些过程在肿瘤起始,进展和转移中起关键作用。这以及它们在许多不同的癌症中的广泛放松管制,引发了对miRNA作为癌症管理的新型治疗靶标的热情,尤其是在具有Kras突变的耐火癌患者中。在这项研究中,我们进行了功能丧失筛查方法,以鉴定miRNA,其沉默促进了肺腺癌(LUAD)细胞对顺铂的敏感性。我们的结果特别表明,针对MiR-92A-3P的反义寡核苷酸是致癌的miR-17〜92簇的成员,导致KRAS突变的LUAD细胞对顺铂的敏感性最大增加。另外,我们证明了这种miRNA细节调节了具有不同遗传改变的各种肿瘤细胞系的凋亡阈值和增殖能力。总体而言,这些数据表明,针对miR-92a-3p的靶向可能是克服实体瘤治疗耐药性的有效策略。
无热冲击 快速升温/降温是燃烧器块故障的主要原因之一。真空成型陶瓷燃烧器块不会受到热冲击。注意:偶尔出现表面裂纹不会导致“贯穿”裂纹。比硬块轻 90% 硬质耐火燃烧器块每立方英尺重 140 至 165 磅。真空成型块每立方英尺仅重 15 至 18 磅。这个重量因素对于屋顶燃烧器尤为重要。经过验证的质量 我们的质量得到了证实,许多燃烧器块制造商购买我们的真空成型燃烧器块用于原始安装。注意:优质的真空成型和纤维衬里技术使我们能够制造出与燃烧器制造商通常提供的形状不同的块。我们提醒客户注意这种可能性,这样可以节省工具和生产成本 可测量的能源效率特性 在燃烧器密集型熔炉中,例如石化工艺加热器,多达 20% 的衬里表面用于燃烧器块。如果这些块是硬质耐火材料,与周围的纤维衬里相比,其绝缘特性相对较差,则衬里的整体热效率会明显降低。一些熔炉无法满足能源要求,仅仅是因为它们的硬块会造成过多的热量损失。纤维衬里和块可以产生更多的热循环,从而降低能源成本。
计划通过一线组合疗法的商业化进展 - 圣地亚哥和东京,2024年11月20日至21日 - Kura Oncology,Inc。(NASDAQ:KURA)和KYOWA KIRIN CO.,LTD。正在研究急性髓样白血病(AML)和其他血液系统恶性肿瘤患者的治疗。根据该协议的条款,库拉将获得3.3亿美元的预付款,并预计将获得最高4.2亿美元的近期里程碑付款,包括在单一疗法复发/耐火(R/R)设置中启动Ziftomenib的付款。此外,库拉有资格获得7.41亿美元的额外开发,监管和商业里程碑付款,总计高达11.61亿美元的里程碑付款,并选择用于实体瘤迹象。在美国,Kura将领导开发,监管和商业战略,并负责制造Ziftomenib。 公司将根据共同制定的美国领土商业化计划共同执行商业化活动,并将在任何潜在的利润和损失中平均分享。在美国,Kura将领导开发,监管和商业战略,并负责制造Ziftomenib。公司将根据共同制定的美国领土商业化计划共同执行商业化活动,并将在任何潜在的利润和损失中平均分享。
推进金属增材制造:从原位表征到涂层设计和工艺创新 摘要 本次演讲强调了三个研究课题。首先,重点是应用原位同步加速器 x 射线衍射研究来深入了解金属增材制造中的动态凝固行为。其次,讨论深入探讨了利用增材制造 (AM) 制作适用于高温应用的先进涂层。定向能量沉积 (DED) 通过利用基材稀释效应来生产无裂纹功能梯度耐火涂层。最后,本次演讲通过创新使用按需滴注技术和金属板原料,介绍了金属 AM 工艺的范式转变。 简历 Atieh Moridi 是康奈尔大学机械与航空航天工程系的助理教授。为了表彰她在增材制造领域的重大贡献,她最近被任命为工程学院的 Aref 和 Manon Lahham 教职研究员。在担任现职之前,她曾在麻省理工学院机械工程系和材料科学与工程系担任博士后研究员。她以优异成绩获得了意大利米兰理工大学的博士学位。她曾获得多项荣誉,包括 NSF CAREER 奖、ONR 青年研究员奖、DOE 早期职业奖、TMS 早期职业奖和强生学者奖。