摘要在许多发展中国家中使用超塑料的使用非常罕见。然而,其包含在混凝土中增强了混凝土的机械和耐用性能。文献中存在关于混凝土中磺化萘甲醛(SNF)超塑料的性能的文献差距,尤其是在撒哈拉以南建筑业中,生产中使用的聚集物的质量值得怀疑。这项研究产生了用局部采购的坑砂生产的两批混凝土,其特征强度为30 MPa。一批没有SNF超塑料来作为对照,而另一批是通过掺入超塑料制成的。研究了压缩和弯曲强度,弹性和动态模量的新鲜特性,以及缩写和弯曲强度的硬化特性。此外,研究了包括吸附,吸水,吸水性,氯化物穿透,电阻率和酸发作的耐用性指标。该研究的结果表明,在混凝土中掺入SNF超塑剂可提高可加工性和混凝土内离子迁移率的降低。这归因于互连孔的存在下降,从而导致机械性能的显着增强,例如增加强度,以及弹性和动态模量的改善。此外,含有SNF超级增塑剂的混凝土比没有SNF超塑料的混凝土更好地保护混凝土免受酸性攻击。该研究建议在混凝土中使用SNF超塑剂来提高可加工性,通过更少的互连孔减少离子运动以及增强的机械性能,从而有可能提高整体耐用性。关键字:SNF超显影剂,新鲜特性,硬化特性,耐用性指标,酸性攻击,本地沙
乙烯基壁板已在美国的住宅外部广受欢迎。以隔热形式,该壁板包括包含泡沫材料的乙烯基壳,胶囊和底物,可作为有效的绝缘材料。尽管提供了一种具有成本效益的解决方案,但具有许多好处,例如提高能源效率,直接安装,降噪,固有的低易燃性,美学吸引力,最小的维护需求,耐用性,耐用性以及针对湿度和霉菌等环境因素的保护,但有两个关键领域可进行潜在的改进。首先,暴露于太阳,热,雨,风,灰尘和污染物可能会导致壳的降解和破裂,从而影响其耐用性,从而影响其作为保护性外层的有效性。其次,火灾性能是一个问题,尤其是当乙烯基壁板以隔热形式使用或安装在易燃泡沫绝缘材料上时。2021年国际能源保护法(IECC)在遵循规定的合规选项时,在大多数美国地区(气候区4及以上)提出了对住宅建筑物外部连续绝缘的要求。一些绝缘材料,例如泡沫聚苯乙烯或聚氨酯喷雾泡沫的特定等级,是高度易燃的。如果发生火灾,则可以用作防止泡沫绝缘的外部火势,以抑制火力快速生长。由于野生世界界面(WUI)火灾的流行,此特征越来越重要。尽管乙烯基壁板,基于不塑性的聚氯化氯化物(U-PVC),但固有地表现出火焰 - 降膜特性,但它可能不是有效的火势屏障。这种限制可能是由于熔化或可能引起的乙烯基壁板开裂等问题引起的。
目标:• 混合热效率核心 (HyTEC) 项目将加速下一代小型核心涡扇发动机技术的开发,提高效率、耐用性、性能、混合化和可持续性,以满足预计在 2030 年代投入使用的下一代单通道飞机 (EIS)。
GridStar Flow 在美国开发,基于一种新型、受保护的氧化还原液流电池化学成分,该化学成分由水基、不易燃的工程电解质组成,这些电解质由常见材料制成,具有耐用性、灵活性、安全性和具有竞争力的总拥有成本。
对残疾员工的环境。在可能的范围内,PWD应访问建筑环境,所有未来的机构应包含可及性规定,例如坡道,可访问的停车场,无障碍厕所,盲文符号和电梯中的听觉信号等。(b)PowerGrid将努力为残疾人提供合适的设施和设施/辅助设备,以有效,有效地释放其功能,包括但不限于高科技/最新技术LED辅助设备(包括低视力辅助设备(包括用电池),包括电池的助听器,助听器),特殊家具(驾驶员)(驾驶员)(驾驶员),以及其他派遣者,softern of divniged 按照他们的要求。 此类设备可以直接由PowerGrid提供,或者可以根据设备/家具/软件的价格/耐用性等特定时间段来偿还费用。按照他们的要求。此类设备可以直接由PowerGrid提供,或者可以根据设备/家具/软件的价格/耐用性等特定时间段来偿还费用。可能是。(c)PowerGrid将努力确保残疾人是
ENDEVCO ® 8500 型扩散压阻式压力传感器是压力传感器系列,与 Endevco 生产高质量仪器的传统一脉相承。除了高质量和高性能之外,这些传感器还具有高度的微型化。该产品系列中最受欢迎的版本之一采用 10-32 UNF 螺纹外壳(直径 5 毫米)。由硅制成的压力传感表面的有效面积直径仅为 0.08 英寸(2 毫米)。性能和耐用性的关键在于独特的传感器设计,该设计结合了扩散到硅芯片中的四臂惠斯通电桥。Endevco 开发了一种特殊形状的硅芯片,而不是简单的平面隔膜,可将应力集中在电阻元件的位置。这可以提高给定共振频率的灵敏度,并大幅提高耐用性。小型传感器内包含桥平衡和温度补偿元件,以优化性能。这是通过使用混合电路制造技术实现的。
摘要:近年来,对基于燃料电池的混合动力拖拉机的关注越来越多。为了优化拖拉机的全球电源分配并进一步提高了系统的燃油经济性和燃料电池耐用性,本文设计了一种能源管理策略,以最大程度地基于燃料电池/锂电池/超级电容器混合拖拉机来最大化外部能源效率。此策略旨在减少系统的实时氢消耗,同时最大程度地提高外部能量输出,从而减少负载随机性对燃料电池输出功率的影响。在拖拉机的典型耕作条件下,将模拟与状态机策略和等效氢消耗策略进行比较。结果表明,所提出的策略符合给定的耕作条件的功率要求,并且与两个传统策略系统相比,辅助能源的性能特征更加全面。它减轻了燃料电池的负担,并提高了燃料电池的耐用性。该系统的氢消耗分别减少了11.03 g和16.54 g,从而改善了混合系统的整体经济性。