摘要 保护部件免受磨损和腐蚀是延长其使用寿命的常用方法。这可以通过在部件上涂覆硬面材料来实现。常见的涂层由碳化钨或钴铬合金(也称为司太立合金)等材料组成。硬面材料可以通过等离子焊接或激光熔覆等焊接方法沉积。基材到硬面层的离散变化会导致裂纹和碎裂。研究表明,当使用功能梯度材料在基材和硬面之间建立平滑过渡时,开裂风险会降低。文献中已经知道从奥氏体钢到钴铬合金的等级。然而,没有关于奥氏体-铁素体双相钢作为基材的知识。因此,本研究旨在证明采用新方法从双相钢到钴铬合金的功能梯度材料的可行性。通过使用基于粉末的定向能量沉积,可以增材制造具有平滑材料过渡的梯度材料。通过金相学检查开裂和孔隙率。使用显微硬度测量以及能量色散X射线光谱和X射线荧光分析化学成分来验证构建策略。
经验研究生研究员2019年6月 - 2024年12月,特拉华大学,材料科学与工程大学,纽瓦克·德(Newark de)•UD•在美国SBA&UD Eng的财务奖中,在UD专利的3个知识产权的发明家中,被选为首届创新特拉华州研究员。•负责500万美元的赠款,以有效加速技术开发的创新,以将实验室研究转化为新兴和服务不足的市场中的消费者就绪产品•NIH临床试验的主要研究人员,用于与NFB Baltimore的人类参与者进行的材料的材料研究人员•调查的表面化学效果,互动和耐磨的机构,互动,互动,效果,耐磨性,效果,效果,耐磨性,适用于人体,耐磨性,耐磨性,效果,耐磨性,耐磨性,耐磨性,磨损,磨损,耐磨性,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,磨损,耐磨性,耐磨度,用于财产预测的高性能,非等热传热和流变学建模•开发的新型高级挤出系统,用于3D印刷具有局部特性的新复合材料,新型的表面化学摩擦修饰,用于非视觉信息和交流•来自陆军研究实验室的资金,塑料创新中心,NIH R01
如果 BSV(采购预订)字段中的条目为“是”;那么这个 Bw 办事处必须被排除在招标之外(根据VOL A)。
摘要:本文介绍了一种利用激光添加剂在SS316L基体表面制备95% IN718+5%(75% Cr 2 O 3 + TiO 2 )陶瓷涂层的方法,分析了金属基复合材料的宏观形貌、物相、微观组织、界面、耐磨性和抗拉强度。结果表明,金属基复合材料(MMC)层状复合材料与单一材料相比具有良好的微观硬度和耐磨性。与单一IN718材料的对比分析表明,层状复合材料表现出优异的微观硬度和耐磨性。此外,研究还揭示了材料硬度与耐磨性之间呈正相关的关系,其特点是随着材料硬度的增加,磨损系数和平均磨损量降低。本研究结果为生产高耐磨涂层复合材料提供了一种经济高效、实用的方法。
具有更高耐磨性和耐臭氧性/液压性能的软管制造商的地址 - 批准依据VG 95938 / VG 95922-6
我们的研究重点是改善钻石(例如碳(DLC)涂层)的摩擦力特性,该特性由新型PVD技术高功率脉冲磁铁溅射(HIPIMS)沉积,并在工具钢上呈阳性脉冲。这些涂层由于其非凡的特性而引起了行业的极大兴趣:出色的耐磨性,非常低的摩擦系数,出色的硬度或生物相容性。这些研究的目的是改善不同钢底物上DLC涂层的摩擦力特性,例如粘合剂或耐磨性。
摘要。这项研究研究了通过摩擦搅拌加工(FSP)的铝 - 氧化铝复合材料的生产,并探讨了机械性能的结果增强。关键重点在于在复合基质中实现Al2O3颗粒的均匀分布,对于优化材料性能至关重要。这些分散的颗粒充当有效的加强剂,阻碍脱位运动和晶界迁移,因此改善了机械属性,例如硬度,强度和耐磨性。实验发现强调了FSP在增强复合材料的各种机械性能方面的功效。值得注意的是,观察到显着改善,包括拉伸强度增加23.56%,硬度增强37.9%,疲劳强度提高了25.5%,耐磨性增加了30.12%。这些结果强调了通过FSP制造的铝 - 氧化铝复合材料的潜力,从而在需要出色的机械性能和耐磨性(例如航空航天,汽车和制造业)的行业中为高性能材料开辟了新的机会。
摘要。在本研究中使用了分析溶液和实验测试的组合,以评估多孔功能分级材料(PFGM)结构系统的耐磨性。使用基于不同参数的3D打印技术制造了圆柱多孔样品。根据ASTM标准,已经使用圆盘摩擦计上的销钉研究了多孔样品的滑动磨损行为。结果显示实验和分析分析之间的合理一致,差异为10.434%。这表明3D打印可以适用于制造可靠的粘弹性样品。但是,孔隙率参数对耐磨性有重大影响。多孔分级技术导致FGM PLA样品的较高实验性耐磨性约为31%。使用扫描电子显微镜(SEM)进行了样品骨折表面的体形观察,以检查PFGM层的性质。
摘要:铜及其合金的电源产品的使用寿命增加与材料耐磨性的抗酸盐直接相关。结构性抑制和与镉合金的合金对铜的强度特性和耐耐磨性具有积极影响,这使得它的CD含量为1%,以增加铜的耐磨性几次,但镉被认为是一种环境不安全元素。在这方面,本文介绍了在超铁颗粒(UFG)状态中广泛使用的CU-CR-ZR合金系统的研究结果,该状态与镉(0.2%,重量)微合成,以改善物理,机械,机械和操作特性,以及环境安全。严重的塑性变形,可供应结构的细化至〜150 nm,以及与Cu-Cr-ZR系统合金的镉微合成,在完整的处理周期后,可提供570±10 MPa的拉伸强度和67%的电导率。同时,相对于工业系统Cu-CD和Cu-Cr-ZR,Abra-Sion抗性分别增加了12%和35%。在强烈磨损条件下运行的连续焊接尖端,集合板和接触线的连续焊接尖端,集合板和接触线非常有前途。