已知两个质量之间的牛顿相互作用的直接量化可以建立纠缠,如果检测到纠缠,将见证引力场的量子性质。引力相互作用也与依赖经典通道的引力退相干模型兼容,因此无法产生纠缠。在这里,我们在典型案例中表明,尽管没有纠缠,引力的经典通道模型仍然可以以两个质量之间的量子不和谐形式建立量子关联。这在 Kafri-Taylor-Milburn (KTM) 模型和最近提出的该模型的耗散扩展中得到了证明。在这两种情况下,从不相关状态开始,通常会产生大量不和谐。这最终在 KTM 模型中衰减,而在其耗散扩展中收敛到一个小的固定值。我们还发现,对质量状态的初始局部压缩可以显著增强产生的不和谐。
超快光纤激光器构成了一个灵活的平台,可用于研究新的孤立波概念。为了超越标准电信光纤中产生的传统孤子的低能量限制,连续的突破促进了光纤振荡器中重要频率啁啾的使用。这导致了原始孤立波状态,例如拉伸脉冲、全正常色散和自相似动力学。我们在这里重新审视由仅具有异常色散的标准光纤构建的超快光纤激光器。我们提出了一种新的腔体设计,通过包含频率啁啾来增强关键的耗散效应,并展示了在几皮秒范围内产生高能脉冲。所涉及的腔内动力学以看不见的方式将传统和耗散孤子特征与低能和高能传播区域融合在一起,从而提高了灵活性和新颖的可扩展性前景。
注意:(1):高度的反射器在可见性中未考虑的高度<20°较小,因为太阳辐射的大气耗散太大了,(2):太阳同步轨道:卫星在同一局部平均太阳时间处的表面上的任何给定点上的任何给定点;资料来源:TAS,Arthur D. Little
摘要:我们利用 2019 年 5 月至 6 月 30 天内具有真实大气强迫和背景环流的全球 1/25 8 混合坐标海洋模型 (HYCOM) 模拟研究了风致近惯性波 (NIW) 的产生、传播和消散。计算了总场的时间平均近惯性风能输入和深度积分能量平衡项,并将场分解为垂直模式以区分 NIW 能量的辐射和(局部)耗散分量。只有 30.3% 的近惯性风输入投射到前五个模式上,而前五个模式中的 NIW 能量之和占总 NIW 能量的 58%。几乎所有深度积分的 NIW 水平能量通量都投射到前五种模式上。NIW 模式的耗散和衰减距离的全球分布证实,低纬度是高纬度产生的 NIW 能量的汇聚点。发现 NIW 能量的局部耗散部分 q 局部 在整个全球海洋中是均匀的,全球平均值为 0.79。水平 NIW 通量从具有气旋涡度的区域发散,并汇聚在具有反气旋涡度的区域;也就是说,反气旋涡流是 NIW 能量通量的汇聚点 (特别是对于较高模式而言)。大多数未投射到模式上的残余能量在反气旋涡流中向下传播。全球近惯性风能输入量在30天内为0.21TW,其中只有19%传输到500米深度以下。
II型超导体的磁场(H) - 温度(t)相位二克由混合状态支配,只要固定涡旋[1],该状态就可以保留零耗散。在二维(2D)限制中,情况可能会大不相同,因为促进的热和量子波动破坏了导管的顺序并引起耗散。值得注意的是,在许多薄膜超导体中,在垂直磁场中观察到的有限电阻比正常状态值低得多,该磁场一直持续到零温度的极限[2-4]。这种异常金属状态(AMS)的存在与本地化缩放理论所提出的不存在2D金属性的主张相矛盾[5]。在过去的几十年中的研究导致了这样的观点,即该状态可以被视为失败的超导体[6],但其起源仍然无法解决[7-17]。高度结晶的2D超导体非常适合研究AMS,因为它们具有出色的清洁剂[18]。通常可以看到磁场诱导的超导金属转变[19-24],而低场耗散状态势必是金属的。但是,受分钟数量的限制,Crys-Talline 2D超导体中AMS的实验探针尚未超过DC传输,并且尚未进行新技术。这些结果指向玻色症Versatile probes are available for films with much larger size, revealing a particle-hole symmetry arising from uncondensed Cooper pairs based on vanishing Hall response [ 25 – 28 ], absence of cyclotron resonance mea- sured by microwave spectroscopy [ 29 ], and charge-2 e ( e is the elementary charge) quantum oscillation in nano- patterned films [ 26 , 28 ].
澳大利亚东南部的WW3后广播模型是墨尔本大学开发的第三代浪潮模型,该模型解决了随机相光谱动作平衡方程。WW3的波形物理学包括ST6源术语包(风输入,白顶耗散,膨胀耗散和负风输入),非线性四倍波波波相互作用,JONSWAP底部摩擦和深度引起的波浪破裂。采用了高分辨率的非结构性网格(图1.1),该网格已通过澳大利亚东南部的三个波模型成功地采用(Liu等,2022a; Liu等,2022b; 2022b; Liu等,2023a; 2023a; Liu等人,Liu等,2023b)。WW3模型是由ERA5重新分析风驱动的,边界条件由Liu等人的全球波浪后广播提供。(2021)。该模型涵盖了1981年至2020年的时期。生成了域的10个集成波参数。请阅读Liu等。(2022a)和Liu等。(2023a)有关详细信息。
量子机学习(QML)是一门学科,具有彻底改变数据处理和解决问题的希望。然而,与环境的耦合产生的耗散和噪音通常被认为是其实际开发的主要障碍,因为它们会影响使用的量子设备的相干性和性能。显着的效果已致力于减轻和控制其对这些设备的负面影响。这种观点采用了不同的方法,旨在利用噪声和消散的潜力,而不是打击它们。令人惊讶的是,这些看似有害的因素在某些情况下可以在QML算法的运行中提供巨大的优势。探索和理解适应QML算法开放量子系统的含义为设计策略提供了有效利用噪声和消散的策略开辟了途径。在此角度进行分析的最新作品仅代表了探索耗散和噪声可能会产生其他潜在隐藏受益的初始步骤。作为该领域的探索,预计可以重塑量子计算的未来的显着发现。
摘要 —本文介绍了一种使用低全球变暖潜能值制冷剂 R1234yf 的两相流微通道热管理系统 (MTMS)。热测试载体 (TTV) 由嵌入基板的单个或多个热测试芯片制成,然后将其附着到 MTMS 上。该系统包括两个相同的铝制微通道散热器 (MHS),它们串联在冷却回路中,冷却回路还包括一个气体流量计、一个微型压缩机、一个冷凝器、一个节流装置和辅助测量组件。实验结果表明,热管理系统可以耗散 526 W/cm 2 的热通量,同时将结温保持在 120 °C 以下。对于具有更高结温(例如 175 °C)的 SiC MOSFET,预计当前系统耗散的热通量高达约 750 W/cm 2。详细分析了压缩机转速、节流装置开度、MHS 上的 TTV 布置、下游加热器对系统冷却性能的影响。研究表明,目前的