量子系统与其环境的相互作用导致量子相干的丧失。通常通过Ancilla,建立良好的储层工程方法调整量子系统与其环境的耦合,可以通过将有效的耗散性动态逐渐发展为量子量子状态或量子状态[1-6],从而克服了有效的耗散动力学来克服脱碳范式。尤其是在电路量子电差异的范围内[7],已经成功利用了储层工程,以自主保护在谐波振荡器的限制希尔伯特空间中编码的量子信息,即玻孔代码,而无需基于测量的反馈。这是通过有效的奇偶校验的工程来实现的,它保留了耗散的演化,该耗散演化将微波谐振器的状态驱动到由相反状态的均匀和奇数相干叠加跨越具有相反位移的歧义的歧管,也称为Schrödinger猫态[8-11]。原则上,这些耗散动态可用于准备猫代码的逻辑状态[9]。尽管如此,这不是必需的,因为使用最佳控制脉冲序列[10],可以使用分散耦合量子轴对微波谐振器场进行通用控制,或者正如最近已证明的那样,已证明,连续变量(CV)通用门集的优化序列[12,13]。因此,为了稳定CAT代码的唯一目的,储层工程是为了唯一的目的。
∂b(b)= -2 ϵ(b)p(b),因此p(b)= e -2 rβ0ϵ(t)dt和| pb⟩= e -r b 0ϵ(t)dt | φB⟩。因此,
应用基于庞特里亚金最大值原理的形式化方法来确定时间最优协议,该协议通过具有有限控制的哈密顿量将一般初始状态驱动到目标状态,即存在具有有界振幅的单个控制场。浴槽和量子比特之间的耦合由林德布拉德主方程建模。耗散通常会将系统驱动到最大混合状态,因此通常存在一个最佳演化时间,超过该时间,退相干将阻止系统接近目标状态。然而,对于某些特定的耗散通道,最佳控制可以使系统无限长时间地远离最大熵状态。详细讨论了这种特定情况出现的条件。描述了构建时间最优协议的数值程序。特别是,这里采用的形式化方法可以有效地评估时间相关的奇异控制,这对于控制孤立或耗散量子比特至关重要。
研究拓扑问题的主要动机是对拓扑顺序侵害环境的保护。在这项工作中,我们研究了与电磁环境耦合的拓扑发射器阵列。光子发射极耦合会在发射器之间产生非局部相互作用。使用周期性的边界条件为环境诱导的相互作用的所有范围,保留了发射极阵列固有的手性对称性。这种手性对称性保护了哈密顿量,并在林德布拉德操作员中诱导了平等。拓扑相变发生在与发射极阵列的能谱宽度相关的临界光子发射极耦合处。有趣的是,临界点非试图改变边缘状态的耗散速率,从而产生耗散性拓扑相变。在受保护的拓扑阶段,边缘状态从环境诱导的耗散范围内,用于弱光子发射极耦合。然而,强耦合可在发射极间距处的窗口带来稳健的无耗散状态。我们的工作显示了通过电磁环境操纵拓扑量子物质的潜力。
通过与环境的相互作用在量子系统中产生耗散,并为量子模拟,计算,通信和计量学中的应用带来了挑战。但是,也可以引入和利用受控的耗散来操纵量子系统。原子物理学中熟悉的例子包括光学泵送和激光冷却。这些技术允许从不受控制的和未知的初始状态中去除熵和近似制备所需的纯状态。这不能通过统一操作来完成。最近,注意力集中在使用耗散进行量子信息处理[1-3],尤其是生成纠缠。虽然本质上不优于统一纠缠产生策略,但耗散方案对某些错误机制的敏感性较小。此外,它们允许在存在噪声的情况下创建和稳定资源状态,从而可以按需使用。在许多系统中都证明了用于纠缠和其他非经典状态的生成和稳定的耗散方案,包括宏观原子团[4],被困的离子[5-7]和超导码头[8-10]。许多建议描述了生成纠缠[11-17],执行误差校正[18,19]的其他方案,并初始化量子模拟器[20]。广义,可以将工程耗散应用于量子信息处理的完整范围尚不清楚,并且可以完成新任务扩展边界的实用协议。第一组实验证明了使用连续应用的耦合的稳态纠缠的准备[6,8]。这些方案中的一种重要成分是时间尺度的层次结构,例如,在速率G上应用强烈的调整驱动器以及与特征率G i的其他相互作用。敷料驱动器会产生共鸣,这些共振由其他驱动器在极限g i g中解析,而时代尺度g -1 i≫g -g -1的层次结构可保护目标状态。然而,这种方案的稳态纠缠仅渐近地接近统一,因为敷料驱动器的相对强度r = g / max {g i}增加。更重要的是,时间尺度的层次结构限制了纠缠速度的速度,因为与G相比,必须缓慢驱动填充目标状态的其他相互作用G I与G的实验可实现的速率相比。这在存在各种错误来源的情况下实用了状态准备的速度和可实现的实力,这些限制更糟
两个量子系统之间的单向非互易相互作用通常用级联量子主方程来描述,并依赖于时间反转对称性 (TRS) 的有效破坏以及相干和耗散相互作用的平衡。在这里,我们提出了一种获得非互易量子相互作用的新方法,它与级联量子系统完全不同,并且通常不需要破坏 TRS。我们的方法依赖于任何马尔可夫林德布拉德主方程中存在的局部规范对称性。这种新型量子非互易性有许多含义,包括一种在目标量子系统上执行耗散稳态酉门操作的新机制。我们还引入了一种新的、非常通用的基于量子信息的度量来量化量子非互易性。
4 GEOMAR 亥姆霍兹基尔海洋研究中心,德国基尔,5 莱布尼茨波罗的海研究所瓦尔内明德,德国罗斯托克,6 日本海洋地球科学技术振兴机构全球变化研究所 (RIGC),日本横须贺,7 日本海洋地球科学技术振兴机构全球海洋观测研究中心 (GOORC),日本横须贺,8 日本海洋地球科学技术振兴机构全球海洋环境研究组,日本横须贺,9 加利福尼亚大学圣地亚哥分校斯克里普斯海洋研究所,美国加利福尼亚州圣地亚哥,10 南大洋碳气候观测站 (SOCCO),科学与工业研究理事会,南非开普敦,11 德克萨斯大学奥登计算工程与科学研究所,美国德克萨斯州奥斯汀,12 国家水与大气研究所,新西兰惠灵顿, 13 奥克兰大学物理系,新西兰奥克兰
不变。在“物理状态”中,a c 存在于一个通道,即传入通道中,b c 存在于所有通道中。当然,由于汉密尔顿量的时间反演不变性,任何这些解的时间反演状态也是一个解。确实存在时间反演不变状态,即
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
电子转移是许多基本物理、化学和生物化学过程的核心,这些过程对生命至关重要。这些反应的精确模拟常常受到大量自由度和量子效应的阻碍。在这里,我们使用多种离子阱晶体通过实验模拟了分子电子转移的典型模型,其中供体-受体间隙、电子和振动电子耦合以及池弛豫动力学都可以独立控制。通过操纵基态和光学量子比特,我们观察到自旋激发的实时动态,测量了几种绝热和弛豫动力学状态下的传输速率。我们的研究结果为日益丰富的分子激发转移过程模型提供了试验场,这些模型与分子电子学和光收集系统有关。