Theta Ja 定义为结温或芯片温度与环境温度之间的热阻。环境温度定义为器件周围自由空气的温度。如果器件处于外壳内,则应在外壳内测量环境温度。公式 1 显示了芯片温度与周围空气温度、Theta Ja 和器件耗散功率之间的依赖关系。如果芯片与周围空气之间存在理想的热传递,则 Theta Ja 等于零且 T J = T A 。或者,如果 IC 在关闭时不耗散任何功率,则 T J = T A 。许多因素都会阻碍热传递,这就是将 Theta Ja 定义为电阻的原因。同样,Theta Ja 定义为对周围空气与封装内芯片位置之间热传递的阻力。Theta Ja 的单位是器件耗散功率每瓦摄氏度。例如,如果 Theta Ja = 26 ° C/W,则设备每消耗 1 W 功率,芯片温度就会升高 26 ° C。
最大功率耗散受 VRG8667/8668 中每个稳压器芯片的热关断功能限制。上图表示芯片关断前可实现的功率。图中第一条线表示 VRG8667/8668 的最大功率耗散,其中一个稳压器打开(另一个关闭),另一条线表示两个稳压器都打开,耗散的功率相等。如果两个稳压器都打开,并且一个稳压器的耗散功率大于另一个稳压器,则 VRG8667/8668 的最大功率耗散将介于两条线之间。该图基于 150℃ 的最大结温以及 7℃/W 的热阻 ( JC)。
在本章中,我们将解释互补金属氧化物半导体 (CMOS) 电路中的两种功耗类型。一般而言,CMOS 电路在任何时候都会耗散功率 — 无论是活动状态还是非活动状态。电路在执行计算任务时消耗的功率称为动态功率。相反,在电路处于休眠状态期间由于漏电而损失的功率称为静态功率。通过精心设计电路,可以将漏电抑制到最低限度。因此,动态功耗通常明显高于静态功耗。可以采用的一些节省动态功耗的技术包括降低电源电压、时钟频率、时钟功率和动态有效电容。通过探究设计模块的活动因素,可以将这些技术应用于高功耗模块。
NSD12416-Q1 是一款 160mΩ 2 通道低侧开关,具有 48V 钳位电压,适用于汽车应用。它设计用于驱动电阻或电感负载,一侧连接到电池。内部 48V 钳位电路可在关断快速退磁时保护器件免受浪涌能量的影响。通过内部输出电流限制,器件可在过载条件下受到保护。内置热关断可防止芯片过热和短路。内置热摆动机制可限制耗散功率,从而减缓功率积累。热关断具有自动重启功能,可使器件在故障条件消失后立即恢复正常运行。内置诊断功能可通过开漏状态输出引脚指示热关断时的任何故障。该器件的工作环境温度为 –40°C 至 125°C。
NSD12409-Q1 是一款 90mΩ 2 通道低侧开关,具有 48V 钳位电压,适用于汽车应用。它设计用于驱动电阻或电感负载,一侧连接到电池。内部 48V 钳位电路可在关断快速退磁时保护器件免受浪涌能量的影响。通过内部输出电流限制,器件可在过载条件下受到保护。内置热关断可防止芯片过热和短路。内置热摆动机制可限制耗散功率,从而减缓功率积累。热关断具有自动重启功能,可使器件在故障条件消失后立即恢复正常运行。内置诊断功能可通过开漏状态输出引脚指示热关断时的任何故障。该器件的工作环境温度为 –40°C 至 125°C。
在许多情况下,GS-RX和GSXTY-Z模块不需要任何其他冷却方法,因为研究了金属盒的尺寸和形状,以提供给定模块的最小可能的热电阻情况。应该记住,GS-R和GS-T模块是电源设备,即释放功率和耗散功率的产品,具体取决于环境温度,可能需要额外的热水渠道或强制通风或两者都需要将单元保持在安全温度范围内。我们希望在这里消除一个错误的参数,该参数一直困扰着电源设备的技术文献已有30年:在绝对最大等级中指定的操作环境温度。当我们处理功率组合时,操作环境温度的概念完全毫无意义,因为操作环境温度取决于如何使用电源设备。可以明确定义的是功率半核设备的最大连接温度或模块的外壳温度。要证明这一点,让我们考虑以下示例: