减少工业二氧化碳排放的领先技术之一是碳捕获和储存 (CCS)。现有出版物讨论了捕获过程的高能量需求,而忽略了二氧化碳运输所需的后续压缩过程,该过程也表现出强烈的能量需求。这项工作旨在研究和比较两种替代方法的能量需求,这些方法与传统工艺相比,用于将捕获的二氧化碳加压至 150 巴。捕获过程之后,二氧化碳通常接近大气压,由于压缩机的限制,需要多级压缩。在每个压缩阶段之后,都需要冷却以将流体保持在接近进一步压缩的最佳温度。所提出的替代方法利用处于超临界状态 (sCO2) 的压缩二氧化碳作为工作流体来回收压缩阶段中可用的热量。其中一种替代方法在每个冷却阶段在集成的开放式超临界朗肯循环 (sRC) 中使用 sCO2。除 sRC 之外的另一种方法在最终压缩阶段的捕获过程再生塔之前加热富含二氧化碳的液体流。压缩过程设计用于 2,779 吨/天的二氧化碳流,代表 400 MW 发电厂捕获的典型二氧化碳质量流量。结果表明,在测试的案例中,结合 sRC 和富含二氧化碳的流加热的情况是最节能的,比仅使用 sRC 的情况少耗能 5.11 MW,比没有中间冷却的传统压缩情况少耗能 4.31 MW。
中国资源节约和环境保护部*提出,加快推进建筑能源利用电气化和脱碳化,因地制宜推广使用热泵、燃气、生物质能、地热能等清洁低碳供暖。《2030年前二氧化碳达峰行动计划》提出,全面提高重点耗能设备能效标准,重点提高泵、压缩机、变压器、热交换器、工业锅炉等设备能效标准。随着建筑碳减排要求的加快落实和清洁供暖补助等政策支持,能源供应市场正朝着绿色、低碳、高能效发展的方向迈进。
该主题与所有能源利用主题相关,并确定了研究建筑围护结构应采用的隔热材料以及耗能设备的效率的基本初始要求,以减少建筑物中可再生和不再生一次能源的消耗。因此,它是空调、供暖、制冷、生活热水、通风和照明设备的计算和设计过程的一部分,确定了这些设备项目中应遵循的能源要求,因此是上述项目的基本组成部分。在本主题中,我们致力于可持续发展目标:可持续发展目标 7 负担得起的清洁能源、可持续发展目标 11 可持续城市和社区、可持续发展目标 12 负责任的生产和消费以及可持续发展目标 13 气候行动
背景:植物-微生物相互作用是不同生态系统中进化和生存的关键。健康的植物被各种微生物所寄生,这些微生物被称为植物微生物群,对植物的生长和适应性有着深远的影响。植物通过各种膜定位受体感知微生物。质膜水平的识别会引发植物宿主的特定反应,从而影响相关微生物群落的结构和功能。识别和理解这些相互作用背后的机制将使我们能够以可持续的方式改善植物健康和作物产量,同时减少由于基于耗能和气候昂贵的化学品的密集作物生长系统而产生的碳足迹。
目前还没有太多人关注人工智能对环境的影响,因为在采用周期的这个阶段,它的影响仍然有限。然而,人工智能有可能显著扩大技术价值链每个部分的环境足迹。它始于定制芯片所需的稀有元素的开采和提炼。它包括数据中心使用的能源和水,预计到明年,这些能源和水将占温室气体排放量的 3% 以上,到 2040 年将占 15%。训练甚至使用 GenAI 模型比人们想象的更耗能(即使我们相信这个数字可以下降),最后,还有处理越来越多的所谓电子垃圾(估计 2024 年约为 6400 万吨)的问题,事实证明,很难将这些电子垃圾排除在垃圾填埋场之外。
项目目标:开发新的催化剂和系统,以降低从甲基环己烷 (MCH) 中提取氢气作为 LOHC 技术的成本,并为新加坡设计一个成本最低的氢气供应链网络。项目优势:MCH 可以在环境条件下使用现有的石油基础设施以液态运输,但从 MCH 分子中提取氢气的过程需要高性能且经济高效的催化剂,并且耗能大。该提案可以提高千代田现有 SPERA 催化剂的性能并降低其成本,并设计出传热性能更好的新反应器,从而降低使用该载体进口氢气的成本。一个全面的财务模型来获取
在这样的框架下,采取长期投资组合方法的政府可能会决定不使用昂贵、耗能且难看的混凝土建造防洪设施,而是以较低的成本投资于上游植树和下游湿地保护。同样,农民也非常清楚生物多样性的丧失和蜜蜂种群的枯竭,但可能不太了解土壤质量下降和作物产量下降等负面后果,这导致对化学肥料的依赖增加和蜜蜂死亡增多,从而加速恶性循环。人类活动对野生自然区域的侵占也助长了埃博拉和 COVID-19 等人畜共患疾病的传播,给社会、经济和政府带来了巨大的损失。
Matrifit 已知只有少数材料(经过特殊处理的半导体)能够以合理的效率显示 PV 效应(参见下方方框中的“太阳能电池”条目)。大多数商用 PV 模块都基于从高品位硅单晶或多晶锭上锯下的薄片。单晶锭以“批量”工艺生长。尽管该方法速度慢且耗能大,但它可以生产出具有良好转换效率(通常为 12% 到 17%)的电池。多晶 PV 材料由较不费力的方法制成,即从许多小硅晶体铸造锭,转换效率通常略低。如果封装并得到适当的护理,这两种材料的性能都不会降低。图 1 显示了晶体硅如何生产成 PV 模块。
总发电量(发电机端)(KWE) 蒸汽轮机 785,587 794,691 785,071 723,700 715,557 耗能空气膨胀机 - 217,964 215,454 80,118 80,714 总发电量(KWE) 785,587 1,012,655 1,000,524 803,818 796,271 总辅助设备(KWE) 235,587 462,655 450,524 253,818 246,271 净功率(KWE) 550,000 550,000 550,000 550,000 550,000 净电厂效率 (% HHV) 31.24 30.55 30.76 32.61 33.00 热输入煤 (KWT HHV) 1,760,447 1,800,104 1,705,240 1,686,511 1,569,989 天然气 (KWT HHV) - - 82,751 - 96,584 总计 (KWT HHV) 1,760,447 1,800,104 1,787,991 1,686,511 1,666,573 碳捕集率 (%) 99.5 99.5 96.8 99.5 99.5